zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bicompleting weightable quasi-metric spaces and partial metric spaces. (English) Zbl 1098.54027
The theories of partial metric spaces and of weightable quasi-metric spaces are equivalent, as was shown by {\it S. G. Matthews} [Ann. New York Acad.Sci. 728, 183--197 (1994; Zbl 0911.54025)]. The present authors prove that the bicompletion of a weightable quasi-metric space is weightable. Thus, every partial metric space has a partial metric completion that is unique up to isometry. As examples, it is shown that the completion of the partial metric space of finite words is the space of at most countable words, and that the partial metric space of complexity functions is a completion of eventually constant complexity functions.

MSC:
54E50Complete metric spaces
54C30Real-valued functions on topological spaces
68Q25Analysis of algorithms and problem complexity
68Q55Semantics
54D35Extensions of topological spaces (compactifications, supercompactifications, completions, etc.)
WorldCat.org
Full Text: DOI
References:
[1] Di Concilio A.,Spazi quasimetrici e topologie ad essi associate, Rend. Accad. Sci. Fis. Mat. Napoli,38 (1971), 113--130. · Zbl 0327.54029
[2] Escardo M. H.,PCF extended with real numbers, Theoretical Computer Science,162 (1996), 79--115. · Zbl 0871.68034 · doi:10.1016/0304-3975(95)00250-2
[3] Fletcher P., Lindgren W. F.,Quasi-uniform Spaces, Marcel Dekker, New York, (1982). · Zbl 0501.54018
[4] Kahn G.,The semantics of a simple language for parallel processing, in: Proc. IFIP Congress, Elsevier North-Holland, Amsterdam,74 (1974), 471--475. · Zbl 0299.68007
[5] Künzi H. P. A.,Nonsymmetric topology, in: Proc. Szekszárd Conference, Bolyai Soc. Math. Studies,4 (1993), Hungary (Budapest 1995), 303--338.
[6] Künzi H. P. A., Vajner V.,Weighted quasi-metric, in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci.,728 (1994), 64--77. · Zbl 0915.54023 · doi:10.1111/j.1749-6632.1994.tb44134.x
[7] Matthews S. G.,Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci.,728 (1994), 183--197. · Zbl 0911.54025 · doi:10.1111/j.1749-6632.1994.tb44144.x
[8] O’Neill S. J.,Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci.,806 (1996), 304--315. · doi:10.1111/j.1749-6632.1996.tb49177.x
[9] Romaguera S., Schellekens M.,Quasi-metric properties of complexity spaces, Topology Appl.,98 (1999), 311--322. · Zbl 0941.54028 · doi:10.1016/S0166-8641(98)00102-3
[10] Salbany S.,Bitopological Spaces, Compactifications and Completions, Math. Monographs, Dept. Math. Univ. Cape Town,1 (1974). · Zbl 0353.54021
[11] Schellekens M.,The Smyth completion: a common foudation for denonational semantics and complexity analysis, in: Proc. MFPS 11, Electronic Notes in Theoretical Computer Science1 (1995), 211--232. · Zbl 05416713 · doi:10.1016/S1571-0661(04)00029-5
[12] Schellekens M.,On upper weightable spaces, in: Proc. 11th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci.,806 (1996), 348--363. · Zbl 0884.54016 · doi:10.1111/j.1749-6632.1996.tb49180.x
[13] Smyth M. B.,Totally bounded spaces and compact ordered spaces as domains of computation, in G. M. Reed, A. W. Roscoe and R. F. Wachter editors, Topology and Category Theory in Computer Science, Oxford University Press, (1991), 207--229.