×

The computational complexity of knot genus and spanning area. (English) Zbl 1098.57003

The paper studies the computational complexity of two problems: the determination of an upper bound on the genus of a knot in a (triangulated and orientable and with orientable embedded surfaces) 3-manifold and the problem of deciding whether a curve in a metrized PL 3-manifold bounds a surface of area less than a given constant.
The first problem can be considered as an extension of the problem of determining whether a given knot is non-trivial, a classical problem posed by M. Dehn [Math. Ann. 69, 137–168 (1910; JFM 41.0543.01)] that lies in the complexity class NP, see J. Hass, J. C. Lagarias and N. Pippenger [J. ACM 46, 185-211 (1999; Zbl 1065.68667)]. The genus \(g\) of a knot \(K\) is the minimum genus of a surface in the class \(S(K)\) of all orientable spanning surfaces for \(K\). Thus, a knot is trivial when its genus is zero.
The authors prove (Theorem 3) that the problem 3-Manifold Knot Genus is NP-complete. This theorem is a corollary of two previous results: Theorem 1 states that the problem is NP-hard; that theorem is proved in Section 3, showing that an instance of the problem One-In-Three SAT can be reduced in polynomial time to an instance of the problem 3-Manifold Knot Genus.
The second result, Theorem 2, shows that 3-Manifold Knot Genus is NP and is proved in Section 5 giving a certificate which demonstrates in polynomial time that the knot \(K\) bounds a surface of genus at most \(g\).
The authors point out that if one restricts to knots in \(\mathbb R^3\) or \(S^3\) it is an open problem whether the corresponding problem remains NP-hard.
In Section 7, using similar methods, the authors show that computing an upper bound on the area of a smallest area spanning surface in a metrized PL 3-dimensional manifold is NP-hard.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
11Y16 Number-theoretic algorithms; complexity
57M50 General geometric structures on low-dimensional manifolds
68W30 Symbolic computation and algebraic computation
68Q25 Analysis of algorithms and problem complexity

References:

[1] M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910), no. 1, 137 – 168 (German). · JFM 41.0543.01 · doi:10.1007/BF01455155
[2] Michael R. Garey and David S. Johnson, Computers and intractability, W. H. Freeman and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness; A Series of Books in the Mathematical Sciences. · Zbl 0411.68039
[3] Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245 – 375 (German). , https://doi.org/10.1007/BF02559591 Horst Schubert, Bestimmung der Primfaktorzerlegung von Verkettungen, Math. Z. 76 (1961), 116 – 148 (German). , https://doi.org/10.1007/BF01210965 Wolfgang Haken, Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten, Math. Z. 76 (1961), 427 – 467 (German). · Zbl 0111.18803 · doi:10.1007/BF01210988
[4] Joel Hass, Algorithms for recognizing knots and 3-manifolds, Chaos Solitons Fractals 9 (1998), no. 4-5, 569 – 581. Knot theory and its applications. · Zbl 0935.57014 · doi:10.1016/S0960-0779(97)00109-4
[5] Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger, The computational complexity of knot and link problems, J. ACM 46 (1999), no. 2, 185 – 211. · Zbl 1065.68667 · doi:10.1145/301970.301971
[6] Joel Hass and Jeffrey C. Lagarias, The number of Reidemeister moves needed for unknotting, J. Amer. Math. Soc. 14 (2001), no. 2, 399 – 428. · Zbl 0964.57005
[7] Geoffrey Hemion, The classification of knots and 3-dimensional spaces, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. · Zbl 0771.57001
[8] John Hempel, 3-Manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. · Zbl 0345.57001
[9] William Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. · Zbl 0433.57001
[10] William Jaco and Ulrich Oertel, An algorithm to decide if a 3-manifold is a Haken manifold, Topology 23 (1984), no. 2, 195 – 209. · Zbl 0545.57003 · doi:10.1016/0040-9383(84)90039-9
[11] William Jaco and Jeffrey L. Tollefson, Algorithms for the complete decomposition of a closed 3-manifold, Illinois J. Math. 39 (1995), no. 3, 358 – 406. · Zbl 0858.57018
[12] William Jaco and J. Hyam Rubinstein, PL equivariant surgery and invariant decompositions of 3-manifolds, Adv. in Math. 73 (1989), no. 2, 149 – 191. · Zbl 0682.57005 · doi:10.1016/0001-8708(89)90067-4
[13] F. Jaeger, D. L. Vertigan, and D. J. A. Welsh, On the computational complexity of the Jones and Tutte polynomials, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 1, 35 – 53. · Zbl 0747.57006 · doi:10.1017/S0305004100068936
[14] H. Kneser, “Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten”, Jahresbericht Math. Verein., 28 (1929) 248-260. · JFM 55.0311.03
[15] Edwin E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96 – 114. · Zbl 0048.17102 · doi:10.2307/1969769
[16] Christos H. Papadimitriou, Computational complexity, Addison-Wesley Publishing Company, Reading, MA, 1994. · Zbl 0833.68049
[17] Michael O. Rabin, Recursive unsolvability of group theoretic problems, Ann. of Math. (2) 67 (1958), 172 – 194. · Zbl 0079.24802 · doi:10.2307/1969933
[18] Joachim H. Rubinstein, An algorithm to recognize the 3-sphere, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 601 – 611. · Zbl 0864.57009
[19] Thomas J. Schaefer, The complexity of satisfiability problems, Conference Record of the Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978) ACM, New York, 1978, pp. 216 – 226. · Zbl 1282.68143
[20] Alexander Schrijver, Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publication. · Zbl 0665.90063
[21] Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245 – 375 (German). , https://doi.org/10.1007/BF02559591 Horst Schubert, Bestimmung der Primfaktorzerlegung von Verkettungen, Math. Z. 76 (1961), 116 – 148 (German). , https://doi.org/10.1007/BF01210965 Wolfgang Haken, Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten, Math. Z. 76 (1961), 427 – 467 (German). · Zbl 0111.18803 · doi:10.1007/BF01210988
[22] A. Sebö, “Hilbert Bases, Caratheodory’s Theorem and Combinatorial Optimization”, in: R. Kannan and W. R. Pulleyblank , Integer Programming and Combinatorial Optimization, University of Waterloo Press, 1990, 431-455.
[23] H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1935), no. 1, 571 – 592 (German). · Zbl 0010.13303 · doi:10.1007/BF01448044
[24] Abigail Thompson, Thin position and the recognition problem for \?³, Math. Res. Lett. 1 (1994), no. 5, 613 – 630. · Zbl 0849.57009 · doi:10.4310/MRL.1994.v1.n5.a9
[25] D. J. A. Welsh, Complexity: knots, colourings and counting, London Mathematical Society Lecture Note Series, vol. 186, Cambridge University Press, Cambridge, 1993. · Zbl 0799.68008
[26] Dominic J. A. Welsh, The complexity of knots, Quo vadis, graph theory?, Ann. Discrete Math., vol. 55, North-Holland, Amsterdam, 1993, pp. 159 – 171. · Zbl 0801.68086 · doi:10.1016/S0167-5060(08)70385-6
[27] D. J. A. Welsh, Knots and braids: some algorithmic questions, Graph structure theory (Seattle, WA, 1991) Contemp. Math., vol. 147, Amer. Math. Soc., Providence, RI, 1993, pp. 109 – 123. · Zbl 0792.05058 · doi:10.1090/conm/147/01166
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.