zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Blinking model and synchronization in small-world networks with a time-varying coupling. (English) Zbl 1098.82621
Summary: The paper proposes a new type of small-world networks of cells with chaotic behavior. This network consists of a regular lattice of cells with constant 2K-nearest neighbor couplings and time-dependent on--off couplings between any other pair of cells. In each time interval of duration such a coupling is switched on with probability p and the corresponding switching random variables are independent for different links and for different times. At each moment, the coupling structure corresponds to a small-world graph, but the shortcuts change from time interval to time interval, which is a good model for many real-world dynamical networks. It is to be distinguished from networks that have randomly chosen shortcuts, fixed in time. Here, we apply the Connection Graph Stability method, developed in the companion paper (”Connection graph stability method for synchronized coupled chaotic systems”, see this issue), to the study of global synchronization in this network with the time-varying coupling structure, in the case where the on--off switching is fast with respect to the characteristic synchronization time of the network. The synchronization thresholds are explicitly linked with the average path length of the coupling graph and with the probability $p$ of shortcut switchings in this blinking model. We prove that for the blinking model, a few random shortcut additions significantly lower the synchronization threshold together with the effective characteristic path length. Short interactions between cells, as in the blinking model, are important in practice. To cite prominent examples, computers networked over the Internet interact by sending packets of information, and neurons in our brain interact by sending short pulses, called spikes. The rare interaction between arbitrary nodes in the network greatly facilitates synchronization without loading the network much. In this respect, we believe that it is more efficient than a structure of fixed random connections.

82C99Time-dependent statistical mechanics
37D45Strange attractors, chaotic dynamics
37N20Dynamical systems in other branches of physics
92C37Cell biology
94C99Circuits, networks
Full Text: DOI
[1] Milgram, S.: Psychol. today. 2, 60 (1961)
[2] Watts, D. J.; Strogatz, S. H.: Nature. 393, 440 (1998)
[3] Strogatz, S. H.: Nature. 410, 268 (2001)
[4] Barthélémy, M.; Amaral, L. A. N.: Phys. rev. Lett.. 82, 3180 (1999)
[5] Monasson, R.: Eur. phys. J. B. 12, 555 (1999)
[6] Newman, M. E. J.: J. stat. Phys.. 101, 819 (2000)
[7] Newman, M. E. J.; Moore, C.; Watts, D. J.: Phys. rev. Lett.. 84, 3201 (2000)
[8] Newman, M. E. J.; Strogatz, S. H.; Watts, D. J.: Phys. rev. E. 64, 026118 (2001)
[9] Barabási, A. -L.; Albert, R.: Science. 286, 509 (1999)
[10] Eckmann, J. -P.; Moses, E.: Proc. natl. Acad. sci. USA. 99, 5825 (2002)
[11] Amaral, L. A. N.; Scala, A.; Barthélémy, M.; Stanley, H. E.: Proc. natl. Acad. sci. USA. 97, 149 (2000)
[12] Newman, M. E. J.: Proc. natl. Acad. sci. USA. 98, 404 (2001)
[13] Newman, M. E. J.: Phys. rev. E. 64, 016131 (2001)
[14] Kuperman, M.; Abramson, G.: Phys. rev. Lett.. 86, 2909 (2001)
[15] Miramontes, O.; Luque, B.: Physica D. 168, 379 (2002)
[16] Zanette, D.: Phys. rev. E. 65, 041908 (2002)
[17] D.J. Watts, Small Worlds, Princeton University Press, Princeton, 1999.
[18] Cancho, R. F. I.; Janssen, C.; Solé, R. V.: Phys. rev. E. 64, 046119 (2001)
[19] Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabási, A. -L.; Albert, R.: Nature (London). 407, 651 (2000)
[20] Lago-Fernández, L. F.; Huerta, R.; Corbacho, F.; Sigüenza, J. A.: Phys. rev. Lett.. 84, 2758 (2000)
[21] Gade, P. M.; Hu, C. K.: Phys. rev. E. 62, 6409 (2000)
[22] Jost, J.; Joy, M. P.: Phys. rev. E. 65, 016201 (2001)
[23] Wang, X.; Chen, G.: Int. J. Bifurcat. chaos. 12, 187 (2002)
[24] Wang, X.: Int. J. Bifurcat. chaos. 12, 885 (2002)
[25] Barahona, M.; Pecora, L. M.: Phys. rev. Lett.. 89, 054101 (2002)
[26] V. Belykh, I. Belykh, M. Hasler, Physica D, this issue.
[27] Fink, K.; Johnson, G.; Carroll, T.; Mar, D.; Pecora, L.: Phys. rev. E. 61, 5080 (2000)
[28] Mills, D. L.: IEEE trans. Commun.. 39, 1482 (1991)
[29] Mills, D. L.: ACM comput. Commun. rev.. 24, 16 (1994)
[30] D.-G. Holmes, T.A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, Wiley-IEEE Press, 2003.
[31] N.N. Bogoliubov, Yu.A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961.
[32] Chernoff, H.: Ann. math. Statist.. 23, 493-507 (1952)
[33] Hagerup, T.; Rub, C.: Inf. proc. Lett.. 33, 305 (1990)