zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Connection graph stability method for synchronized coupled chaotic systems. (English) Zbl 1098.82622
Summary: This paper elucidates the relation between network dynamics and graph theory. A new general method to determine global stability of total synchronization in networks with different topologies is proposed. This method combines the Lyapunov function approach with graph theoretical reasoning. In this context, the main step is to establish a bound on the total length of all paths passing through an edge on the network connection graph. In particular, the method is applied to the study of synchronization in rings of 2K-nearest neighbor coupled oscillators. A rigorous bound is given for the minimum coupling strength sufficient for global synchronization of all oscillators. This bound is explicitly linked with the average path length of the coupling graph. Contrary to the master stability function approach developed by Pecora and Carroll, the connection graph stability method leads to global stability of synchronization, and it permits not only constant, but also time-dependent interaction coefficients. In a companion paper (”Blinking model and synchronization in small-world networks with a time-varying coupling,” see this issue), this method is extended to the blinking model of small-world networks where, in addition to the fixed 2K-nearest neighbor interactions, all the remaining links are rapidly switched on and off independently of each other.

82C99Time-dependent statistical mechanics
05C20Directed graphs (digraphs), tournaments
05C69Dominating sets, independent sets, cliques
37D45Strange attractors, chaotic dynamics
37N20Dynamical systems in other branches of physics
Full Text: DOI
[1] Fujisaka, H.; Yamada, T.: Prog. theor. Phys.. 72, 885 (1984)
[2] Afraimovich, V. S.; Verichev, N. N.; Rabinovich, M. I.: Radiophys. quant. Electron.. 29, 795 (1986)
[3] Pecora, L. M.; Carroll, T. L.: Phys. rev. Lett.. 64, 821 (1990)
[4] V.N. Belykh, N.N. Verichev, L.J. Kocarev, L.O. Chua, in: R.N. Madan (Ed.), Chua’s Circuit: A Paradigm for Chaos, World Scientific, Singapore, 1993, 325.
[5] Heagy, J. F.; Carroll, T. L.; Pecora, L. M.: Phys. rev. E. 50, 1874 (1994)
[6] Heagy, J. F.; Pecora, L. M.; Carroll, T. L.: Phys. rev. Lett.. 74, 4185 (1994)
[7] Wu, C. W.; Chua, L. O.: IEEE trans. Circuits syst. I: fundam. Theory appl.. 43, 161 (1996)
[8] Pecora, L. M.; Carroll, T. L.; Johnson, G. A.; Mar, D. J.; Heagy, J. F.: Chaos. 7, 520 (1997)
[9] Afraimovich, V. S.; Chow, S. N.; Hale, J. K.: Physica D. 103, 442 (1997)
[10] Hale, J. K.: J. dyn. Diff. eq.. 9, 1 (1997)
[11] Afraimovich, V. S.; Lin, W. W.: Dyn. stab. Syst.. 13, 237 (1998)
[12] Pecora, L. M.; Carroll, T. L.: Phys. rev. Lett.. 80, 2109 (1998)
[13] Pecora, L. M.: Phys. rev. E.. 58, 347 (1998)
[14] Josić, K.: Nonlinearity. 13, 1321 (2000)
[15] Zanette, D. H.; Mikhailov, A. S.: Phys. rev. E. 57, 276 (1998)
[16] Manrubia, S. C.; Mikhailov, A. S.: Phys. rev. E. 60, 1579 (1999)
[17] Pogromsky, A. Yu.; Nijmeijer, H.: IEEE trans. Circuits syst. I: fundam. Theory appl.. 48, 152 (2001)
[18] C.W. Wu, in: L.O. Chua (Ed.), Synchronization in Coupled Chaotic Circuits and Systems, vol. 41, World Scientific Series on Nonlinear Science, Series A, World Scientific, Singapore, 2002. · Zbl 1007.34044
[19] Wu, C. W.: IEEE trans. Circuits syst. I: fundam. Theory appl.. 50, 294 (2003)
[20] Jost, J.; Joy, M. P.: Phys. rev. E. 65, 016201 (2001)
[21] Rangarajan, G.; Ding, M.: Phys. lett. A. 296, 204 (2002)
[22] Chen, Y.; Rangarajan, G.; Ding, M.: Phys. rev. E.. 67, 026209 (2003)
[23] Wang, X. F.; Chen, G.: IEEE trans. Circuits syst. I: fundam. Theory appl.. 49, 54 (2002)
[24] Barahona, M.; Pecora, L. M.: Phys. rev. Lett.. 89, 054101 (2002)
[25] Belykh, V. N.; Belykh, I. V.; Hasler, M.; Nevidin, K. V.: Int. J. Bifurc. chaos. 13, 756 (2003)
[26] Kaneko, K.: Physica D. 75, 55 (1994)
[27] Sherman, A.: Bull. math. Biol.. 56, 811 (1994)
[28] Terry, J. R.; Jr., K. S. Thornburg; Deshazer, D. J.; Vanwiggeren, G. D.; Zhu, S.; Ashwin, P.; Roy, R.: Phys. rev. E. 59, 4036 (1999)
[29] Belykh, V. N.; Belykh, I. V.; Hasler, M.: Phys. rev. E. 62, 6332 (2000)
[30] Belykh, I. V.; Belykh, V. N.; Nevidin, K. V.; Hasler, M.: Chaos. 13, 165 (2003)
[31] Pogromsky, A. Yu.; Santoboni, G.; Nijmeijer, H.: Physica D. 172, 65 (2002)
[32] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge University Press, Cambridge, 2001. · Zbl 0993.37002
[33] Hasler, M.; Maistrenko, Yu.: IEEE trans. Circuits syst. I: fundam. Theory appl.. 44, 856 (1997)
[34] Kocarev, L.; Parlitz, U.: Phys. rev. Lett.. 76, 1816 (1996)
[35] J. Kurths, S. Boccaletti, C. Grebogi, Y.-C. Lai (Organizers), Focus Issue: Control and Synchronization in Chaotic Dynamical Systems, Chaos 13 (2003) 126.
[36] Y. Kuramoto, in: H. Araki (Ed.), International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics 39, Springer-Verlag, Berlin, 1975, p. 420.
[37] Kopell, N.; Ermentrout, G. B.: Math. biosci.. 90, 87 (1988)
[38] Watanabe, S.; Strogatz, S. H.: Phys. rev. Lett.. 70, 2391 (1993)
[39] Strogatz, S. H.; Mirollo, R. E.: Physica D. 31, 143-168 (1988)
[40] Somers, D.; Kopell, N.: Physica D. 89, 169 (1995)
[41] I.V. Belykh, V.N. Belykh, M. Hasler, Physica D, this issue.
[42] Belykh, I. V.: Radiophys. quant. Electron.. 38, 69 (1995)
[43] Watts, D. J.; Strogatz, S. H.: Nature. 393, 440 (1998)
[44] Strogatz, S. H.: Nature. 410, 268 (2001)
[45] Newman, M. E. J.; Moore, C.; Watts, D. J.: Phys. rev. Lett.. 84, 3201 (2000)