×

Robust controllability of linear stochastic uncertain systems. (English) Zbl 1098.93006

Summary: The paper extends the concept of robust controllability via linear state feedback to stochastic uncertain systems. We show that the controllability of a stochastic uncertain system can be characterized using solutions to a game-type differential Riccati equation.

MSC:

93B05 Controllability
93B35 Sensitivity (robustness)
93C41 Control/observation systems with incomplete information
93E03 Stochastic systems in control theory (general)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arapostathis, A.; George, R.K.; Ghosh, M.K., On the controllability of a class of nonlinear stochastic systems, Systems & control letters, 44, 1, 25-34, (2001) · Zbl 0986.93007
[2] Barmish, B.R., 1981. Controllability of linear systems in the presence of non-separable uncertainty. In Proceedings of the 19th Allerton conference on communications control and computing, Monticello, Illinois.
[3] Bashirov, A.E.; Mahmudov, N.I., On concepts of controllability for deterministic and stochastic systems, SIAM journal of control and optimization, 37, 1808-1821, (1999) · Zbl 0940.93013
[4] Brockett, R.W., Finite dimensional linear systems, (1970), Wiley New York · Zbl 0216.27401
[5] Choi, C.H.; Laub, A.J., Efficient matrix-valued algorithms for solving stiff Riccati differential equations, IEEE transaction automatic control, 35, 770-776, (1990) · Zbl 0714.93011
[6] Chung, D.; Park, C.G.; Lee, J.G., Robustness of controllability and observability of continuous linear time-varying systems with parameter perturbations, IEEE transactions on automatic control, 44, 1919-1923, (1999) · Zbl 0956.93043
[7] Dai Pra, P.; Meneghini, L.; Runggaldier, W., Connections between stochastic control and dynamic games, Mathematics of control signals and systems, 9, 303-326, (1996) · Zbl 0874.93096
[8] Dupuis, P.; Ellis, R., A weak convergence approach to the theory of large deviations, (1997), Wiley New York · Zbl 0904.60001
[9] Mahmudov, N.I., Controllability of linear stochastic systems, IEEE transactions on automatic control, 46, 724-731, (2001) · Zbl 1031.93034
[10] Petersen, I. R., Corless, M., Ryan, E. P., (March 1992). A necessary and sufficient condition for quadratic finite time feedback controllability. In: Mansour, M., Balemi, S., Truöl, W., (Eds.), Robustness of dynamic systems with parameter uncertainties: Proceedings of the international workshop on robust control (p. 165-173). Ascona, Switzerland: Birkhäuser. · Zbl 0778.93030
[11] Petersen, I.R.; James, M.R.; Dupuis, P., Minimax optimal control of stochastic uncertain systems with relative entropy constraints, IEEE transactions on automatic control, 45, 398-412, (2000) · Zbl 0978.93083
[12] Sastry, S.S.; Desoer, C.A., The robustness of controllability and observability of linear time-varying systems, IEEE transactions on automatic control, 27, 933-939, (1982) · Zbl 0486.93013
[13] Savkin, A.V.; Petersen, I.R., Robust control with a terminal state constraint, Automatica, 32, 1001-1005, (1996) · Zbl 0854.93041
[14] Savkin, A.V.; Petersen, I.R., Weak robust controllability and observability of uncertain linear systems, IEEE transactions on automatic control, 44, 1037-1041, (1999) · Zbl 0956.93004
[15] Ugrinovskii, V.A., Observability of linear stochastic uncertain systems, IEEE transactions on automatic control, 48, 2264-2269, (2003) · Zbl 1364.93752
[16] Ugrinovskii, V.A.; Petersen, I.R., Finite horizon minimax optimal control of stochastic partially observed time varying uncertain systems, Mathematics of control signals and systems, 12, 1-23, (1999) · Zbl 0929.93038
[17] Ugrinovskii, V.A.; Petersen, I.R., Minimax LQG control of stochastic partially observed uncertain systems, SIAM journal of control and optimization, 40, 1189-1226, (2001) · Zbl 1016.93072
[18] Ugrinovskii, V.A.; Petersen, I.R., Robust output feedback stabilization via risk-sensitive control, Automatica, 38, 945-955, (2002) · Zbl 1030.93049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.