Saminger, Susanne On ordinal sums of triangular norms on bounded lattices. (English) Zbl 1099.06004 Fuzzy Sets Syst. 157, No. 10, 1403-1416 (2006). Summary: Ordinal sums have been introduced in many different contexts, e.g., for posets, semigroups, t-norms, copulas, aggregation operators, or quite recently for hoops. In this contribution, we focus on ordinal sums of t-norms acting on some bounded lattice which is not necessarily a chain or an ordinal sum of posets. Necessary and sufficient conditions are provided for an ordinal sum operation yielding again a t-norm on some bounded lattice whereas the operation is determined by an arbitrary selection of subintervals as carriers for arbitrary summand t-norms. In this way also the structure of the underlying bounded lattice is investigated. Further, it is shown that up to trivial cases there are no ordinal sum t-norms on product lattices in general. Cited in 1 ReviewCited in 47 Documents MSC: 06B05 Structure theory of lattices 03E72 Theory of fuzzy sets, etc. Keywords:triangular norm; ordinal sum; horizontal sum; bounded lattice PDF BibTeX XML Cite \textit{S. Saminger}, Fuzzy Sets Syst. 157, No. 10, 1403--1416 (2006; Zbl 1099.06004) Full Text: DOI OpenURL References: [1] Alsina, C.; Trillas, E.; Valverde, L., On some logical connectives for fuzzy sets theory, J. math. anal. appl., 93, 15-26, (1983) · Zbl 0522.03012 [2] Birkhoff, G., Lattice theory, (1973), American Mathematical Society Providence, RI · Zbl 0126.03801 [3] Blok, W.J.; Ferreirim, I.M.A., On the structure of hoops, Algebra universalis, 43, 233-257, (2000) · Zbl 1012.06016 [4] Busaniche, M., Free algebras in varieties of BL-algebras generated by a chain, Algebra universalis, 50, 259-277, (2003) · Zbl 1081.03063 [5] Clifford, A.H., Naturally totally ordered commutative semigroups, Amer. J. math., 76, 631-646, (1954) · Zbl 0055.01503 [6] Climescu, A.C., Sur l’équation fonctionelle de l’associativité, Bull. école polytechn. iassy, 1, 1-16, (1946) [7] Davey, B.A.; Priestley, H.A., Introduction to lattices and order, (2002), Cambridge University Press Cambridge · Zbl 1002.06001 [8] De Baets, B.; Mesiar, R., Triangular norms on product lattices, Fuzzy sets and systems, 104, 61-75, (1999) · Zbl 0935.03060 [9] B. De Baets, R. Mesiar, Ordinal sums of aggregation operators, in: B. Bouchon-Meunier, J. Gutiérrez-Ríos, L. Magdalena, R.R. Yager (Eds.), Technologies for Constructing Intelligent Systems, vol. 2: Tools, Physica-Verlag, Heidelberg, 2002, pp. 137-148. · Zbl 1015.68194 [10] De Cooman, G.; Kerre, E.E., Order norms on bounded partially ordered sets, J. fuzzy math., 2, 281-310, (1994) · Zbl 0814.04005 [11] Deschrijver, G.; Kerre, E.E., Triangular norms and related operators in \(L^*\)-fuzzy set theory, (), 231-259, (Chapter 8) · Zbl 1079.03043 [12] Esteva, F.; Godo, L., Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy sets and systems, 124, 271-288, (2001) · Zbl 0994.03017 [13] Goguen, J.A., J. math. anal. appl., 18, 145-174, (1967) [14] Goguen, J.A., The fuzzy Tychonoff theorem, J. math. anal. appl., 43, 734-742, (1973) · Zbl 0278.54003 [15] Goguen, J.A., Concept representation in natural and artificial languages: axioms, extensions and applications for fuzzy sets, Internat. J. man-machine stud., 6, 513-561, (1974) · Zbl 0321.68055 [16] Gottwald, S., A treatise on many-valued logic, studies in logic and computation, (2001), Research Studies Press Baldock [17] Gottwald, S.; Hájek, P., Triangular norm-based mathematical fuzzy logics, (), 275-299, (Chapter 10) · Zbl 1078.03020 [18] Hájek, P., Metamathematics of fuzzy logic, (1998), Kluwer Academic Publishers Dordrecht · Zbl 0937.03030 [19] K.H. Hofmann, J.D. Lawson, Linearly ordered semigroups: Historic origins and A.H. Clifford’s influence, London Mathematical Society Lecture Notes, vol. 231, Cambridge University Press, Cambridge, 1996, pp. 15-39. · Zbl 0901.06012 [20] Höhle, U., Probabilistische topologien, Manuscripta math., 26, 223-245, (1978) · Zbl 0413.54003 [21] Höhle, U., Commutative, residuated \(\ell\)-monoids, (), 53-106 · Zbl 0838.06012 [22] U. Höhle, E.P. Klement (Eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets. A Handbook of the Mathematical Foundations of Fuzzy Set Theory, Theory and Decision Library, Series B: Mathematical and Statistical Methods, vol. 32, Kluwer Academic Publishers, Dordrecht, 1995. [23] Hutton, B., Normality in fuzzy topological spaces, J. math. anal. appl., 130, 354-364, (1975) [24] Jenei, S., A note on the ordinal sum theorem and its consequence for the construction of triangular norms, Fuzzy sets and systems, 126, 199-205, (2002) · Zbl 0996.03508 [25] Jenei, S.; De Baets, B., On the direct decomposability of t-norms over direct product lattices, Fuzzy sets and systems, 139, 699-707, (2003) · Zbl 1032.03022 [26] Karaçal, F.; Khadjiev, D., \(\vee\)-distributive and infinitely \(\vee\)-distributive t-norms on complete lattices, Fuzzy sets and systems, 151, 341-352, (2005) · Zbl 1062.06007 [27] Klein-Barmen, F., Über gewisse halbverbände und kommutative semigruppen II, Math. Z., 48, 715-734, (1942-43) · Zbl 0028.00601 [28] E.P. Klement, R. Mesiar (Eds.), Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, Elsevier, Amsterdam, 2005. [29] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Trends in Logic, Studia Logica Library, vol. 8, Kluwer Academic Publishers, Dordrecht, 2000. · Zbl 0972.03002 [30] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms as ordinal sums of semigroups in the sense of A.H. Clifford semigroup forum, 65, 71-82, (2002) · Zbl 1007.20054 [31] Ling, C.M., Representation of associative functions, Publ. math. debrecen, 12, 189-212, (1965) · Zbl 0137.26401 [32] Mayor, G.; Torrens, J., Triangular norms on discrete settings, (), 189-230, (Chapter 7) · Zbl 1079.03012 [33] Menger, K., Statistical metrics, Proc. natl. acad. sci. USA, 8, 535-537, (1942) · Zbl 0063.03886 [34] Mostert, P.S.; Shields, A.L., On the structure of semi-groups on a compact manifold with boundary, Ann. math., II. ser., 65, 117-143, (1957) · Zbl 0096.01203 [35] R.B. Nelsen. An Introduction to Copulas, Lecture Notes in Statistics, vol. 139, Springer, New York, 1999. · Zbl 0909.62052 [36] Riečanová, Z., Pastings of MV-effect algebras, Internat. J. theoret. phys., 43, 1875-1883, (2004) · Zbl 1078.81009 [37] Rodabaugh, S.E., The Hausdorff separation axiom for fuzzy topological spaces, Topology appl., 11, 319-334, (1980) · Zbl 0484.54008 [38] S. Saminger, E.P. Klement, R. Mesiar, On an extension of triangular norms on bounded lattices, Submitted for publication. · Zbl 1171.03011 [39] Schweizer, B.; Sklar, A., Espaces métriques aléatoires, C.R. acad. sci. Paris Sér. A, 247, 2092-2094, (1958) · Zbl 0085.12503 [40] Schweizer, B.; Sklar, A., Statistical metric spaces, Pacific J. math., 10, 313-334, (1960) · Zbl 0091.29801 [41] Schweizer, B.; Sklar, A., Associative functions and statistical triangle inequalities, Publ. math. debrecen, 8, 169-186, (1961) · Zbl 0107.12203 [42] Schweizer, B.; Sklar, A., Probabilistic metric spaces, (1983), North-Holland New York · Zbl 0546.60010 [43] Zhang, D., Triangular norms on partially ordered sets, Fuzzy sets and systems, 153, 2, 195-209, (2005) · Zbl 1091.03025 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.