×

Congruence subgroups of groups commensurable with \(\text{PSL}(2,\mathbb Z)\) of genus \(0\) and \(1\). (English) Zbl 1099.11022

Thompson has proved that, up to conjugation, there are only finitely subgroups of \(\Lambda=\text{PSL}_2(\mathbb{R})\) containing a (non-trivial) principal congruence subgroup of the modular group \(\text{PSL}_2(\mathbb{Z})\) of a fixed genus. (The genus of a (discrete) subgroup \(G\) of \(\Lambda\) is the genus of the Riemann surface \(\mathbb{H}^2/G\), where \(\mathbb{H}^2\) is hyperbolic \(2\)-space.)
This paper provides a detailed version of Thompson’s theorem for the two lowest genus values. They compile a complete list of all congruence subgroups of \(\Lambda\) of genus \(0\) and \(1\). The proofs involve computations using Magma.
The results answer a question of Conway and Norton by listing all the so-called “moonshine groups”, i.e. the genus zero subgroups \(G\) of \(\Lambda\) which contain (i) a subgroup of the type \(\Gamma_0(N)\) and (ii) translations only defined by rational integers.
The authors discuss the overlap between their results and those of K. S. Chua and M. L. Lang in “Congruence subgroups associated to the Monster” [Exp. Math. 13, No. 3, 343–360 (2004), see Zbl 1099.11018 above].

MSC:

11F06 Structure of modular groups and generalizations; arithmetic groups
11F03 Modular and automorphic functions
30F35 Fuchsian groups and automorphic functions (aspects of compact Riemann surfaces and uniformization)
11F22 Relationship to Lie algebras and finite simple groups
20H05 Unimodular groups, congruence subgroups (group-theoretic aspects)

Citations:

Zbl 1099.11018
PDF BibTeX XML Cite
Full Text: DOI Euclid EuDML

References:

[1] DOI: 10.1017/CBO9780511629259.010
[2] DOI: 10.1007/BF01359701 · Zbl 0177.34901
[3] DOI: 10.1007/BF01232032 · Zbl 0799.17014
[4] DOI: 10.1006/jsco.1996.0125 · Zbl 0898.68039
[5] Chua K. S., Exper. Math. 13 (3) pp 343– (2004) · Zbl 1099.11021
[6] DOI: 10.1112/blms/11.3.308 · Zbl 0424.20010
[7] Cox D. A., J. Reine Angew. Math. 351 pp 66– (1984)
[8] Cox D. A., ”Genera of Congruence Subgroups in Q-Quaternion Algebras.” (1984) · Zbl 0531.10028
[9] DOI: 10.1007/s002220050167 · Zbl 0985.11017
[10] Cummins C. J., Exper. Math. 12 (2) pp 243– (2003) · Zbl 1060.11021
[11] Cummins C. J., ”Fundamental Domains of Discrete Subgroups of PSL(2, \[ )." (2004) \]
[12] Dennin J. B., Illinois J. Math. 15 pp 442– (1971)
[13] Dennin J. B., Illinois J. Math. 16 pp 502– (1972)
[14] Dennin J. B., Illinois J. Math. 18 pp 246– (1974)
[15] DOI: 10.1007/BF01112194 · Zbl 0143.30601
[16] DOI: 10.1112/jlms/s2-2.1.67 · Zbl 0189.09902
[17] Knopp M. I., Illinois J. Math 9 pp 577– (1965)
[18] Lang M. L., ”On Thompson’s Finiteness Theorem.” (2003) · Zbl 1075.20020
[19] Larcher H., Illinois J. Math. 26 (1) pp 164– (1982)
[20] Larcher H., Illinois J. Math. 28 (2) pp 312– (1984)
[21] McKay, J. 1978. [McKay 78], Unpublished letter to J. Thompson
[22] McQuillan D. L., Illinois J. Math. 10 pp 24– (1966)
[23] McQuillan D. L., Illinois J. Math. 10 pp 479– (1966)
[24] DOI: 10.1215/S0012-7094-55-02203-1 · Zbl 0064.32702
[25] Norton S. P., Computational Group Theory pp 185– (1984)
[26] DOI: 10.1515/9783110893106.433
[27] Norton, S. P. 1997. [Norton 97], Unpublished tables
[28] DOI: 10.1090/S0002-9939-01-06176-7 · Zbl 0981.20038
[29] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions. (1971) · Zbl 0221.10029
[30] DOI: 10.1112/blms/11.3.352 · Zbl 0425.20016
[31] Thompson, J. G. 1980.”A Finiteness Theorem for Subgroups of PSL(2, \[ ) Which Are Commensurable with PSX(2, \] ).”533–555. Providence, RI: Amer. Math. Soc. [Thompson 80], Proc. Sym. Pure. Math. 37
[32] Wohlfahrt K., Illinois J. Math. 8 pp 529– (1964)
[33] Zograf P., J. Reine Angew. Math. 414 pp 113– (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.