zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Tensor categories attached to double groupoids. (English) Zbl 1099.16016
A (finite) double groupoid is a groupoid object in the category of (finite) groupoids. They have been around since the 1960’s, arising originally in homotopy theory. Roughly speaking, they consist of a finite number of boxes with vertical and horizontal compositions and with groupoid compositions on the sides, satisfying some compatibility conditions. Let $kT$ ($k$ a field of characteristic zero) be the vector space with the boxes of $T$ as basis. The authors previously considered an algebra structure on $kT$ coming from the vertical composition and a coalgebra structure from the horizontal composition, and studied when this produced a weak Hopf algebra (also called a quantum groupoid) [Publ. Mat. Urug. 10, 11-51 (2005; Zbl 1092.16021)]. A necessary and sufficient condition was given (called vacancy of $T$), and the resulting quantum groupoid was described as an Abelian bicrossed product. In the paper under review, the coalgebra structure is modified. The resulting construction is shown to be a quantum groupoid if $T$ satisfies a condition called the filling condition. The resulting quantum groupoid does not seem to be describable as a bicrossed product, but it is semisimple and its finite-dimensional representation category is a semisimple rigid monoidal category. The authors show that several tensor categories fit their construction. One is the category of $R$-bimodules over a separable algebra $R$.

MSC:
16W30Hopf algebras (associative rings and algebras) (MSC2000)
18D05Double categories, $2$-categories, bicategories and generalizations
18B40Groupoids, semigroupoids, semigroups, groups (viewed as categories)
20L05Groupoids
WorldCat.org
Full Text: DOI arXiv
References:
[1] N. Andruskiewitsch, S. Natale, Double categories and quantum groupoids, preprint math.QA/0308228 (2003), Publ. Mat. Urug., to appear. · Zbl 1092.16021
[2] Böhm, G.; Nill, F.; Szlachányi, K.: Weak Hopf algebras I. Integral theory and C*-structure. J. algebra 221, 385-438 (1999) · Zbl 0949.16037
[3] Böhm, G.; Szlachányi, K.: A coassociative C*-quantum group with nonintegral dimensions. Lett. math. Phys. 35, 437-456 (1996) · Zbl 0872.16022
[4] Böhm, G.; Szlachányi, K.: Weak Hopf algebras. II: representation theory, dimensions, and the Markov trace. J. algebra 233, 156-212 (2000) · Zbl 0980.16028
[5] R. Brown, Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems, Fields Inst. Commun. 43 101-130; American Mathematical Society, Providence, RI, 2004.
[6] Brown, R.; Mackenzie, K.: Determination of a double Lie groupoid by its core diagram. J. pure appl. Algebra 80, 237-272 (1992) · Zbl 0766.22001
[7] R. Brown, C. Spencer, Double groupoids and crossed modules, Cahiers de Topologie et Geo. Differentielle Categoriques, vol. XVII, 1976, pp. 343-364. · Zbl 0344.18004
[8] Ehresmann, C.: Catégories doubles et catégories structurées. CR acad. Sci. Paris 256, 1198-1201 (1963) · Zbl 0132.25702
[9] P. Etingof, D. Nikshych, V. Ostrik, On fusion categories, preprint math.QA/0203060 (2002). · Zbl 1125.16025
[10] F. Hausser, F. Nill, Integral theory for quasi-Hopf algebras, preprint math.QA/9904164 (1999). · Zbl 0936.17011
[11] T. Hayashi, A brief introduction to face algebras, in: New trends in Hopf Algebra Theory, Contemp. Math. 267 (2000) 161-176. · Zbl 0974.16032
[12] Mackenzie, K.: Double Lie algebroids and second-order geometry, I. Adv. math. 94, 180-239 (1992) · Zbl 0765.57025
[13] Mackenzie, K.: Double Lie algebroids and second-order geometry, II. Adv. math. 154, 46-75 (2000) · Zbl 0971.58015
[14] Majid, S.: Foundations of quantum group theory. (1995) · Zbl 0857.17009
[15] S. Natale, Frobenius-Schur indicators for a class of fusion categories, preprint math.QA/0312466 (2003), Pacific J. Math., to appear.
[16] Nikshych, D.: Semisimple weak Hopf algebras. J. algebra 275, 639-667 (2004) · Zbl 1066.16042
[17] Nikshych, D.; Vainerman, L.: Finite quantum groupoids and their applications. Math. sci. Res. inst. Publ. 43, 211-262 (2002) · Zbl 1026.17017
[18] V. Ostrik, Module categories over the Drinfeld double of a finite group, Internat. Math. Res. Not. 2003 (2003) 1507-1520, preprint math.QA/0202130. · Zbl 1044.18005
[19] M. Takeuchi, Survey on matched pairs of groups, An Elementary Approach to the ESS-LYZ Theory, Banach Center Publications, vol. 61, 2003, pp. 305-331. · Zbl 1066.16044