Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. (English) Zbl 1099.17015

The authors first introduce the notion of quasi-hom-Lie algebras, a natural generalization of hom-Lie algebras introduced by J. T. Hartwig and the authors [J. Algebra 295, No. 2, 314–361 (2006; Zbl 1138.17012)]. Quasi-hom-Lie algebras include color Lie algebras and superalgebras, and can be seen as deformations of these by maps, twisting the Jacobi identity and skew-symmetry. The goal for introducing the quasi-hom-Lie algebras is to generalize or deform the Witt algebra of derivations on the Laurent polynomials \({\mathbb C}[t,t^{-1}]\). A theory of central extensions for quasi-hom-Lie algebras is developed. The main result of the paper is the description of central extensions of quasi-hom-Lie algebras in terms of equivalence classes of 2-cocycle-like maps.
Reviewer: Yucai Su (Hefei)


17B61 Hom-Lie and related algebras
17B56 Cohomology of Lie (super)algebras
17B68 Virasoro and related algebras


Zbl 1138.17012
Full Text: DOI arXiv


[1] Aizawa, N.; Sato, H.-T., \(q\)-Deformation of the Virasoro algebra with central extension, Phys. Lett. B, 256, 2, 185-190 (1999) · Zbl 1332.17011
[2] Bloch, S., Zeta values and differential operators on the circle, J. Algebra, 182, 476-500 (1996) · Zbl 0868.17017
[3] Chaichian, M.; Isaev, A. P.; Lukierski, J.; Popowicz, Z.; Prešnajder, P., \(q\)-Deformations of Virasoro algebra and conformal dimensions, Phys. Lett. B, 262, 1, 32-38 (1991)
[4] Chaichian, M.; Kulish, P.; Lukierski, J., \(q\)-Deformed Jacobi identity, \(q\)-oscillators and \(q\)-deformed infinite-dimensional algebras, Phys. Lett. B, 237, 3-4, 401-406 (1990)
[5] Chaichian, M.; Prešnajder, P., \(q\)-Virasoro algebra, \(q\)-conformal dimensions and free \(q\)-superstring, Nuclear Phys. B, 482, 1-2, 466-478 (1996) · Zbl 0974.81507
[6] Chung, W.-S., Two parameter deformation of Virasoro algebra, J. Math. Phys., 35, 5, 2490-2496 (1994) · Zbl 0822.17015
[7] Curtright, T. L.; Zachos, C. K., Deforming maps for quantum algebras, Phys. Lett. B, 243, 3, 237-244 (1990)
[8] (Deligne, P.; Etingof, P.; Freed, D. S.; Jeffrey, L. C.; Kazhdan, D.; Morgan, J. W.; Morrison, D. R.; Witten, E., Quantum Fields and Strings: A Course for Mathematicians, vol. 2 (1999), Amer. Math. Soc.) · Zbl 0984.00503
[9] Di Francesco, P.; Mathieu, P.; Sénéchal, D., Conformal Field Theory (1997), Springer, 890 pp · Zbl 0869.53052
[10] Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex Operator Algebras and the Monster (1988), Academic Press, 508 pp · Zbl 0674.17001
[11] Fuchs, J., Affine Lie Algebras and Quantum Groups (1992), Cambridge University Press, 433 pp · Zbl 0925.17031
[12] Fuchs, J., Lectures on Conformal Field Theory and Kac-Moody Algebras, Springer Lecture Notes in Phys., vol. 498 (1997), pp. 1-54 · Zbl 0920.17012
[13] Fuks, D. B., Cohomology of Infinite-Dimensional Lie Algebras (1986), Plenum · Zbl 0667.17005
[14] Hartwig, J. T.; Larsson, D.; Silvestrov, S. D., Deformations of Lie algebras using \(σ\)-derivations, Preprints in Mathematical Sciences 2003:32, LUTFMA-5036-2003, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University, 2003, preprint
[15] Hellström, L.; Silvestrov, S. D., Commuting Elements in \(q\)-Deformed Heisenberg Algebras (2000), World Scientific, 256 pp · Zbl 0956.17006
[16] H.P. Jakobsen, Matrix chain models and their \(q\); H.P. Jakobsen, Matrix chain models and their \(q\)
[17] Jakobsen, H. P.; Lee, H. C.-W., Matrix chain models and Kac-Moody algebras, (Kac-Moody Lie Algebras and Related Topics. Kac-Moody Lie Algebras and Related Topics, Contemp. Math., vol. 343 (2004), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 147-165 · Zbl 1142.17307
[18] Kac, V. G., Simple irreducible graded Lie algebras of finite growth, Math. USSR Izv., 2, 1271-1311 (1968) · Zbl 0222.17007
[19] Kac, V. G.; Raina, A. K., Highest Weight Representations of Infinite-Dimensional Lie Algebras (1987), World Scientific, 145 pp · Zbl 0668.17012
[20] Kassel, C., Cyclic homology of differential operators, the Virasoro algebra and a \(q\)-analogue, Comm. Math. Phys., 146, 343-351 (1992) · Zbl 0761.17020
[21] Khesin, B.; Lyubashenko, V.; Roger, C., Extensions and contractions of Lie algebra of \(q\)-pseudodifferential symbols on the circle, J. Func. Anal., 143, 55-97 (1997) · Zbl 0872.35138
[22] Larsson, D.; Silvestrov, S. D., Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, Preprints in Mathematical Sciences 2004:3, ISSN 1403-9338, LUTFMA-5038-2004 · Zbl 1099.17015
[23] Li, W.-L., 2-Cocycles on the algebra of differential operators, J. Algebra, 122, 64-80 (1989) · Zbl 0671.17010
[24] Moody, R. V., A new class of Lie algebras, J. Algebra, 10, 211-230 (1968) · Zbl 0191.03005
[25] Passman, D. S., Simple Lie color algebras of Witt type, J. Algebra, 208, 698-721 (1998) · Zbl 0923.17013
[26] Polychronakos, A. P., Consistency conditions and representations of a \(q\)-deformed Virasoro algebra, Phys. Lett. B, 256, 1, 35-40 (1991) · Zbl 1332.81097
[27] Sato, H.-T., Realizations of \(q\)-deformed Virasoro algebra, Progr. Theoret. Phys., 89, 2, 531-544 (1993)
[28] Sato, H.-T., \(q\)-Virasoro operators from an analogue of the Noether currents, Z. Phys. C, 70, 2, 349-355 (1996)
[29] Scheunert, M., Introduction to the cohomology of Lie superalgebras and some applications, Res. Exp. Math., 25, 77-107 (2002) · Zbl 1022.17013
[30] Scheunert, M.; Zhang, R. B., Cohomology of Lie superalgebras and their generalizations, J. Math. Phys., 39, 5024-5061 (1998) · Zbl 0928.17023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.