×

Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations. (English) Zbl 1099.35125

Summary: The nonlinear Klein-Gordon equations with power law nonlinearities are studied. The tanh method is used for analytic treatment of these equations. The analysis leads to travelling wave solutions with compactons, solitons, solitary patterns and periodic structures.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35C05 Solutions to PDEs in closed form
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Polyanin, A. D.; Zaitsev, V. E., Handbook of nonlinear partial differential equations (2004), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton · Zbl 1053.35001
[2] Khater, A. H.; Hasan, M. M., Travelling and periodic wave solutions of some nonlinear wave equations, Z. Naturforsch, 59a, 7/8, 389-396 (2004)
[3] Infeld, E.; Rowlands, G., Nonlinear waves, solitons and chaos (2000), Cambridge University Press: Cambridge University Press Cambridge, England · Zbl 0726.76018
[4] Wadati, M., Introduction to solitons, Pramana: J Phys, 57, 5-6, 841-847 (2001)
[5] Wadati, M., The exact solution of the modified Kortweg-de Vries equation, J Phys Soc Jpn, 32, 1681-1687 (1972)
[6] Wadati, M., The modified Kortweg-de Vries equation, J Phys Soc Jpn, 34, 1289-1296 (1973) · Zbl 1334.35299
[7] Rosenau, P.; Hyman, J. M., Compactons: solitons with finite wavelengths, Phys Rev Lett, 70, 5, 564-567 (1993) · Zbl 0952.35502
[8] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am J Phys, 60, 7, 650-654 (1992) · Zbl 1219.35246
[9] Malfliet, W.; Hereman, W., The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys Scr, 54, 563-568 (1996) · Zbl 0942.35034
[10] Malfliet, W.; Hereman, W., The tanh method: II. Perturbation technique for conservative systems, Phys Scr, 54, 569-575 (1996) · Zbl 0942.35035
[11] Wazwaz, A. M., The tanh method for travelling wave solutions of nonlinear equations, Appl Math Comput, 154, 3, 713-723 (2004) · Zbl 1054.65106
[12] Wazwaz, A. M., The tanh method: exact solutions of the Sine-Gordon and the Sinh-Gordon equations, Appl Math Comput, 167, 2, 1196-1210 (2005) · Zbl 1082.65585
[13] Wazwaz, A. M., Partial differential equations: methods and applications (2002), Balkema Publishers: Balkema Publishers The Netherlands · Zbl 0997.35083
[14] Wazwaz, A. M., New solitary-wave special solutions with compact support for the nonlinear dispersive \(K(m,n)\) equations, Chaos, Solitons & Fractals, 13, 2, 321-330 (2002) · Zbl 1028.35131
[15] Wazwaz, A. M., A study of nonlinear dispersive equations with solitary-wave solutions having compact support, Math Comput Simul, 56, 269-276 (2001) · Zbl 0999.65109
[16] Wazwaz, A. M., Compactons dispersive structures for variants of the \(K(n,n)\) and the KP equations, Chaos, Solitons & Fractals, 13, 5, 1053-1062 (2002) · Zbl 0997.35083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.