Propagation of electromagnetic waves in non-homogeneous media. (English) Zbl 1099.35140

Summary: We consider electromagnetic waves propagating in a periodic medium characterized by two small scales. We perform the corresponding homogenization process, relying on the modelling by Maxwell partial differential equations.


35Q60 PDEs in connection with optics and electromagnetic theory
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
78A25 Electromagnetic theory (general)
Full Text: DOI EuDML


[1] G. Allaire: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482-2518. · Zbl 0770.35005
[2] M. Artola, M. Cessenat: Sur un problème raide en homogénéisation elliptique. C. R. Acad. Sci., Paris, Sér. I 309 (1989), 761-766. · Zbl 0696.49019
[3] M. Artola, M. Cessenat: Un problème raide avec homogénéisation en électromagnétisme. C. R. Acad. Sci., Paris, Sér. I 310 (1990), 9-14. · Zbl 0706.35130
[4] M. Artola, M. Cessenat: Sur la propagation des ondes électromagnétiques dans un milieu composite (diélectrique-conducteur). C. R. Acad. Sci., Paris, Sér. I 310 (1990), 375-380. · Zbl 0705.35135
[5] M. Artola, M. Cessenat: Problèmes d’homogénéisation diélectrique conducteur dans les composites en structure périodique. Rapport CEA-DAM, Limeil-Valenton, 1990.
[6] A. Bensoussan, J.-L. Lions, and G. Papanicolaou: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam-New York-Oxford, 1978. · Zbl 0404.35001
[7] A. Bossavit: Electromagnétisme, en vue de la modélisation. Springer-Verlag, Paris, 1991.
[8] M. Bouix: Les discontinuités du rayonnement électromagnétique. Dunod, Paris, 1965.
[9] M. Cessenat: Mathematical Methods in Electromagnetism. Linear Theory and Applications. World Scientific Publishers, River Edge, 1996. · Zbl 0917.65099
[10] D. Cioranescu, F. Murat: Un terme étrange venu d’ailleurs. Nonlinear Partial Differential Equations and Their Applications. Collège de France seminar, Vol. III. Research Notes in Mathematics, H. Brezis, and J. L. Lions (ed.), Pitman, London, 1982, pp. 98-138. · Zbl 0496.35030
[11] D. Cioranescu, F. Murat: Un terme étrange venu d’ailleurs II. Nonlinear Partial Differential Equations and Their Applications. Coll. de France semin., Vol. II. Research Notes in Mathematics, H. Brezis, J. L. Lions (ed.), Pitman, London, 1982, pp. 154-178. · Zbl 0496.35030
[12] D. Cioranescu, P. Donato: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and its Applications 17. Oxford University Press, New York-Paris, 1999.
[13] R. Dautray, J. L. Lions: Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 2. Masson, Paris, 1985. · Zbl 0642.35001
[14] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. · Zbl 0688.35007
[15] J.-S. Hubert, E. Sanchez-Palencia: Introduction aux Méthodes asymptotiques et à l’homogénéisation. Application à la mécaniques des milieux continus. Masson, 1992.
[16] E. Sanchez-Palencia: Non-Homogeneous Media and Vibration Theory. Lectures Notes in Physics 127. Springer-Verlag, Berlin-Heidelberg-New York, 1980. · Zbl 0432.70002
[17] L. Tartar: Cours Peccot. Collège de France, 1977.
[18] L. Tartar: Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics, Vol. IV, Pitman, Boston-London, 1979, pp. 136-212. · Zbl 0437.35004
[19] N. Wellander: Homogenization of Maxwell equations, Case I. Linear Theory. Appl. Math. 46 (2001), 29-51. · Zbl 1058.78004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.