## Mathematical modelling of cable stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems.(English)Zbl 1099.35151

Summary: A model of a cable stayed bridge is proposed. This model describes the behaviour of the center span, the part between pylons, hung on one row of cable stays. The existence, the uniqueness of a solution of a time independent problem and the continuous dependence on data are proved. The existence and the uniqueness of a solution of a linearized dynamic problem are proved. A homogenizing procedure making it possible to replace cables by a continuous system is proposed. A nonlinear dynamic problem connected with the homogenizing procedure is proposed and the existence and uniqueness of a solution are proved.

### MSC:

 35Q72 Other PDE from mechanics (MSC2000) 35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs 35B35 Stability in context of PDEs
Full Text:

### References:

 [1] N. U. Ahmed, H. Harbi: Mathematical analysis of dynamic models of suspension bridges. SIAM J. Appl. Math. 58 (1998), 853-874. · Zbl 0912.93048 [2] J. Berkovits, P. Drábek, H. Leinfelder, V. Mustonen, and G. Tajčová: Time-periodic oscillations in suspension bridges: existence of unique solution. Nonlinear Anal., Real World Appl. 1 (2000), 345-362. · Zbl 0989.74031 [3] P. Drábek, H. Leinfelder, and G. Tajčová: Coupled string-beam equations as a model of suspension bridges. Appl. Math. 44 (1999), 97-142. · Zbl 1059.74522 [4] A. Fonda, Y. Schneider, and F. Zanolin: Periodic oscillations for a nonlinear suspension bridge model. J. Comput. Appl. Math. 52 (1994), 113-140. · Zbl 0810.73030 [5] H . Gajewski, K. Gröger, and K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974. · Zbl 0289.47029 [6] J. Glover, A. C. Lazer, and P. J. Mc Kenna: Existence and stability of large scale nonlinear oscillations in suspension bridges. Z. Angew. Math. Phys. 40 (1989), 171-200. · Zbl 0677.73046 [7] A. Kufner, O. John, and S. Fučík: Function Spaces. Academia, Prague, 1977. [8] A. C. Lazer, P. J. Mc Kenna: Large scale oscillatory behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 4 (1987), 244-274. · Zbl 0633.34037 [9] A. C. Lazer, P. J. Mc Kenna: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Review 32 (1989), 537-578. · Zbl 0725.73057 [10] A. C. Lazer, W. Walter: Nonlinear oscillations in a suspension bridge. Arch. Rational Mech. Anal. 98 (1987), 167-177. [11] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969. · Zbl 0189.40603 [12] J. Malík: Variational formulations of some models of suspension and cable stayed bridges. European J. Mech.-Solids/A, Submitted. [13] S. L. Sobolev: Applications of Functional Analysis in Mathematical Physics. American Mathematical Society, Providence, 1963. · Zbl 0123.09003 [14] G. Tajčová: Mathematical models of suspension bridges. Appl. Math. 42 (1997), 451-480. · Zbl 1042.74535 [15] R. Walther, B. Houriet, W. Isler, P. Moïa, and J. F. Klein: Cable Stayed Bridges. Thomas Telford, , 1999. [16] K. Yosida: Functional analysis. Springer-Verlag, Berlin-Götingen-Heidelberg, 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.