PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. (English) Zbl 1099.35157

Summary: Modeling the movement of cells (bacteria, amoeba) is a long standing subject and partial differential equations have been used several times. The most classical and successful system was proposed by Patlak and Keller & Segel and is formed of parabolic or elliptic equations coupled through a drift term. This model exhibits a very deep mathematical structure because smooth solutions exist for small initial norm (in the appropriate space) and blow-up for large norms. This reflects experiments on bacteria like Escherichia coli or amoeba like Dictyostelium discoïdeum exhibiting pointwise concentrations.
For human endothelial cells, several experiments show the formation of networks that can be interpreted as the initiation of angiogenesis. To recover such patterns a hydrodynamical model seems better adapted.
The two systems can be unified by a kinetic approach that was proposed for Escherichia coli, based on more precise experiments showing a movement by ‘jump and tumble’. This nonlinear kinetic model is interesting by itself and the existence theory is not complete. It is also interesting from a scaling point of view; in a diffusion limit one recovers the Keller-Segel model and in a hydrodynamical limit one recovers the model proposed for human endothelial cells.
We also mention the mathematical interest of analyzing another degenerate parabolic system (exhibiting different properties) proposed to describe the angiogenesis phenomena, i.e. the formation of capillary blood vessels.


35Q80 Applications of PDE in areas other than physics (MSC2000)
35B40 Asymptotic behavior of solutions to PDEs
92C17 Cell movement (chemotaxis, etc.)
35K65 Degenerate parabolic equations
35D05 Existence of generalized solutions of PDE (MSC2000)


Full Text: DOI EuDML


[1] W. Alt: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9 (1980), 147-177. · Zbl 0434.92001
[2] W. Alt, G. Hoffmann: Biological motion. Proceedings of a workshop held in Königswinter, Germany, March 16-19, 1989. Lecture Notes in Biomathematics, 89. Springer-Verlag, Berlin, 1990. · Zbl 0734.92006
[3] A. R. A. Anderson, M. A. J. Chaplain: A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl. Math. Lett. 11 (1998), 109-114. · Zbl 0935.92024
[4] C. Bardos, R. Santos, and R. Sentis: Diffusion approximation and computation of the critical size. Trans. Amer. Math. Soc. 284 (1984), 617-649. · Zbl 0508.60067
[5] N. Bellomo, L. Preziosi: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Modelling 32 (2000), 413-452. · Zbl 0997.92020
[6] M. D. Betterton, M. P. Brenner: Collapsing bacterial cylinders. Phys. Rev. E 64 (2001).
[7] P. Biler: Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9 (1999), 347-359. · Zbl 0941.35009
[8] P. Biler, T. Nadzieja: A class of nonlocal parabolic problems occurring in statistical mechanics. Colloq. Math. 66 (1993), 131-145. · Zbl 0818.35046
[9] P. Biler, T. Nadzieja: Global and exploding solutions in a model of self-gravitating systems. Rep. Math. Phys. 52 (2003), 205-225. · Zbl 1043.85001
[10] M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel, and S. C. Venkataramani: Diffusion, attraction and collapse. Nonlinearity 12 (1999), 1071-1098. · Zbl 0942.35018
[11] M. P. Brenner, L. Levitov, and E. O. Budrene: Physical mechanisms for chemotactic pattern formation by bacteria. Biophysical Journal 74 (1995), 1677-1693.
[12] C. Cercignani, R. Illner, and M. Pulvirenti: The Mathematical Theory of Dilute Gases. Applied Math. Sciences Vol. 106, Springer-Verlag, New York, 1994. · Zbl 0813.76001
[13] F. Chalub, P. Markowich, B. Perthame, and C. Schmeiser: Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh. Math. 142 (2004), 123-141. · Zbl 1052.92005
[14] M. A. J. Chaplain: Avascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modelling of the stages of tumor development. Math. Comput. Modelling 23 (1996), 47-87. · Zbl 0859.92012
[15] M. A. J. Chaplain, L. Preziosi: Macroscopic modelling of the growth and developement of tumor masses. Preprint No. 27, Politecnico di Torino, 2000.
[16] L. Corrias, B. Perthame, and H. Zaag: A chemotaxis model motivated by angiogenesis. C. R. Acad. Sci. Paris, Ser. I 336 (2003), 141-146. · Zbl 1028.35062
[17] L. Corrias, B. Perthame, and H. Zaag: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milano J. Math. 72 (2004), 1-29. · Zbl 1115.35136
[18] F. A. Davidson, A. R. A. Anderson, and M. A. J. Chaplain: Steady-state solutions of a generic model for the formation of capillary networks. Appl. Math. Lett. 13 (2000), 127-132. · Zbl 0964.92023
[19] P. Degond, T. Goudon, and F. Poupaud: Diffusion limit for nonhomogeneous and non-micro-reversible processes. Indiana Univ. Math. J. 49 (2000), 1175-1198. · Zbl 0971.82035
[20] Y. Dolak, T. Hillen: Cattaneo models for chemotaxis, numerical solution and pattern formation. J. Math. Biol. 46 (2003), 461-478. · Zbl 1062.92501
[21] J. Dolbeault, B. Perthame: Optimal critical mass in the two dimensional Keller-Segel model in \(\mathbb{R}^2\). C. R. Acad. Sci. (2004) · Zbl 1056.35076
[22] Y. Dolak, C. Schmeiser: Kinetic Models for Chemotaxis. ANUM preprint. (2003). · Zbl 1077.92003
[23] L. C. Evans: Partial Differential Equations. Amer. Math. Soc., Providence, 1998. · Zbl 0902.35002
[24] F. Filbet, P. Laurençot, and B. Perthame: Derivation of hyperbolic models for chemosensitive movement. Preprint. Ecole Normale Supérieure, 2003.
[25] M. A. Fontelos, A. Friedman, and B. Hu: Mathematical analysis of a model for the initiation of angiogenesis. SIAM J. Math. Anal. 33 (2002), 1330-1355. · Zbl 1020.35030
[26] A. Friedman, I. Tello: Stability of solutions of chemotaxis equations in reinforced random walks. J. Math. Anal. Appl. 272 (2002), 138-163. · Zbl 1025.35005
[27] H. Gajewski, K. Zacharias: Global behaviour of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195 (1998), 77-114. · Zbl 0918.35064
[28] A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, and F. Bussolino: Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90 (2003), .
[29] I. Gasser, P.-E. Jabin, and B. Perthame: Regularity and propagation of moments in some nonlinear Vlasov systems. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 1259-1273. · Zbl 0984.35102
[30] R. T. Glassey: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia, 1996. · Zbl 0858.76001
[31] M. A. Herrero, J. J. L. Velázquez: Singularity patterns in a chemotaxis model. Math. Ann. 306 (1996), 583-623. · Zbl 0864.35008
[32] M. A. Herrero, E. Medina, and J. J. L. Velázquez: Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10 (1997), 1739-1754. · Zbl 0909.35071
[33] T. Hillen, H. Othmer: The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61 (2000), 751-775. · Zbl 1002.35120
[34] D. Horstmann: Lyapunov functions and \(L^p\) estimates for a class of reaction-diffusion systems. Colloq. Math. 87 (2001), 113-127. · Zbl 0966.35022
[35] D. Horstmann: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresber. Dtsch. Math.-Ver. Vol. 105, 2003, pp. 103-165. · Zbl 1071.35001
[36] H. J. Hwang, K. Kang, and A. Stevens: Global solutions of nonlinear transport equations for chemosensitive movement. SIAM J. Math. Anal
[37] W. Jäger, S. Luckhaus: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 329 (1992), 819-824. · Zbl 0746.35002
[38] E. F. Keller: Assessing the Keller-Segel model: How has it fared? Biological growth and spread. Proc. Conf., Heidelberg, 1979. Lecture Notes in Biomath. Vol. 38, Springer-Verlag, Berlin-New York, 1980, pp. 379-387.
[39] E. F. Keller, L. A. Segel: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26 (1970), 399-415. · Zbl 1170.92306
[40] E. F. Keller, L. A. Segel: Model for chemotaxis. J. Theoret. Biol. 30 (1971), 225-234. · Zbl 1170.92307
[41] E. F. Keller, L. A. Segel: Travelling bands of chemotactic bacteria: a theoretical analysis. J. Theoret. Biol. 30 (1971), 235-248. · Zbl 1170.92308
[42] H. A. Levine, B. D. Sleeman: A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 57 (1997), 683-730. · Zbl 0874.35047
[43] H. A. Levine, B. D. Sleeman: Partial differential equations of chemotaxis and angiogenesis. Math. Methods Appl. Sci. 24 (2001), 405-426. · Zbl 0990.35014
[44] H. A. Levine, M. Nilsen-Hamilton, and B. D. Sleeman: Mathematical modelling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 42 (2001), 195-238. · Zbl 0977.92013
[45] P. K. Maini: Applications of mathematical modelling to biological pattern formation. Coherent Structures in Complex Systems (Sitges, 2000). Lecture Notes in Phys. Vol. 567, Springer-Verlag, Berlin, 2001, pp. 205-217. · Zbl 0985.92011
[46] D. Manoussaki: Modeling and simulation of the formation of vascular networks. ESAIM Proc. 12 (2002 (electronic)), 108-114. · Zbl 1010.92014
[47] A. Marrocco: 2D simulation of chemotactic bacteria agreggation. ESAIM: Math. Model. Numer. Anal. 37 (2003), 617-630. · Zbl 1065.92006
[48] P. Michel, S. Mischler, and B. Perthame: General entropy equations for structured population models and scattering. C. R. Acad. Sci. Paris · Zbl 1049.35070
[49] J. D. Murray: Mathematical Biology, Vol. 2, third revised edition. Spatial Models and Biomedical Applications. Springer-Verlag, , 2003. · Zbl 1006.92002
[50] T. Nagai: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5 (1995), 581-601. · Zbl 0843.92007
[51] T. Nagai, T. Senba: Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis. Adv. Math. Sci. Appl. 8 (1998), 145-156. · Zbl 0902.35010
[52] J. Nieto, F. Poupaud, and J. Soler: High field limit for the Vlasov-Poisson-Fokker-Planck system. Arch. Rational. Mech. Anal. 158 (2001), 29-59. · Zbl 1038.82068
[53] H. G. Othmer, A. Stevens: Aggregation, blowup and collapse: the ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57 (1997), 1044-1081. · Zbl 0990.35128
[54] H. G. Othmer, S. R. Dunbar, and W. Alt: Models of dispersal in biological systems. J. Math. Biol. 26 (1988), 263-298. · Zbl 0713.92018
[55] C. S. Patlak: Random walk with persistence and external bias. Bull. Math. Biophys. 15 (1953), 311-338. · Zbl 1296.82044
[56] B. Perthame: Mathematical tools for kinetic equations. Bull. Amer. Math. Soc. (NS) 41 (2004), 205-244. · Zbl 1151.82351
[57] M. Rascle: On a system of non-linear strongly coupled partial differential equations arising in biology. Proc. Conf. on Ordinary and Partial Differential Equation. Lectures Notes in Math. Vol. 846, Everitt and Sleeman (eds.), Springer-Verlag, New-York, 1981, pp. 290-298. · Zbl 0455.35076
[58] M. Rascle, C. Ziti: Finite time blow-up in some models of chemotaxis. J. Math. Biol. 33 (1995), 388-414. · Zbl 0814.92014
[59] G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, and F. Bussolino: Modeling the early stages of vascular network assembly. The EMBO Journal 22 (2003), 1771-1779.
[60] T. Sanba and T. Suzuki: Weak solutions to a parabolic-elliptic system of chemotaxis. J. Functional. Analysis 47 (2001), 17-51.
[61] H. R. Schwetlick: Travelling fronts for multidimensional nonlinear transport equations. Ann. Inst. H. Poincaré. Anal. non Linéaire 17 (2000), 523-550. · Zbl 0965.45012
[62] A. Stevens: The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math. 61 (2000), 183-212. · Zbl 0963.60093
[63] A. Stevens, M. Schwelick: Work in preparation.
[64] M. I. Weinstein: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1983), 567-576. · Zbl 0527.35023
[65] Y. Yang, H. Chen, and W. Liu: On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis. SIAM J. Math. Anal. 33 (2001), 763-785. · Zbl 1029.35132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.