Guillarmou, Colin Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. (English) Zbl 1099.58011 Duke Math. J. 129, No. 1, 1-37 (2005). The author’s aim in this article is to complete a full analysis of the meromorphically continued resolvent of the Laplacian: \( R(\lambda) := (\Delta_g-\lambda (n - \lambda))^{-1} \) on \((n+1)\)-dimensional asymtotically hyperbolic manifolds \((X^{n + 1}, g)\). Although R. Mazzeo and R. B. Melrose [J. Funct. Anal. 75, 260–310 (1987; Zbl 0636.58034)] proved that the resolvent \({(\Delta-s(n-s))^{-1}}\) admits a meromorphic continuation to \(s\in \mathbb{C}\), there are special points \(\frac{n}{2} - \mathbf N\) which are not covered in their study, leaving open the possibility of essential singularities in the resolvent at these points. The author focuses on these points showing that “there could be at most poles of finite multiplicity and that the same property holds for the points \(\frac{n + 1}{2} \, - \mathbf N\) if and only if the metric is even. On the other hand there exist some metrics for which \(R(\lambda)\) has an essential singularity on \(\frac{n + 1}{2}- \mathbf N\) and these cases are generic”. Reviewer: Mahameden Ould Ahmedou (Tübingen) Cited in 3 ReviewsCited in 68 Documents MSC: 58J50 Spectral problems; spectral geometry; scattering theory on manifolds 35P25 Scattering theory for PDEs Keywords:resolvent; Poisson operator; scattering theory Citations:Zbl 0636.58034 PDF BibTeX XML Cite \textit{C. Guillarmou}, Duke Math. J. 129, No. 1, 1--37 (2005; Zbl 1099.58011) Full Text: DOI arXiv OpenURL References: [1] S. Agmon, “On the spectral theory of the Laplacian on non-compact hyperbolic manifolds” in Journées “Equations aux dérivées partielles” (Saint-Jean de Monts, 1987) , École Polytech., Palaiseau, 1987, exp. no. XVII. · Zbl 0636.58037 [2] –. –. –. –., A perturbation theory of resonances , Comm. Pure. Appl. Math. 51 (1998), 1255–1309. · Zbl 0941.47008 [3] D. Borthwick, Scattering theory and deformations of asymptotically hyperbolic manifolds , · Zbl 1009.58021 [4] D. Borthwick and P. Perry, Scattering poles for asymptotically hyperbolic manifolds , Trans. Amer. Math. Soc. 354 (2002), 1215–1231. JSTOR: · Zbl 1009.58021 [5] U. Bunke and M. Olbrich, Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group , Ann. of Math (2) 149 (1999), 627–689. JSTOR: · Zbl 0969.11019 [6] C. Cuevas and G. Vodev, Sharp bounds on the number of resonances for conformally compact manifolds with constant negative curvature near infinity , Commun. Partial Differential Equations 28 (2003), 1685–1705. · Zbl 1046.58011 [7] C. R. Graham, “Volume and area renormalizations for conformally compact Einstein metrics” in The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, Czech Republic, 1999) , Rend. Circ. Mat. Palermo (2), Suppl. 63 , Cir. Mat. Palermo, Palermo, 2000, 31–42. · Zbl 0984.53020 [8] C. R. Graham and M. Zworski, Scattering matrix in conformal geometry , Invent. Math. 152 (2003), 89–118. · Zbl 1030.58022 [9] C. Guillarmou, Résonances sur les variétés asymptotiquement hyperboliques , Ph.D. dissertation, Université de Nantes, Nantes, 2004, http://tel.ccsd.cnrs.fr/ [10] L. Guillopé, “Fonctions zêta de Selberg et surfaces de géométrie finie” in Zeta Functions in Geometry (Tokyo, 1990) , Adv. Stud. Pure Math. 21 , Kinokuniya, Tokyo, 1992, 33–70. · Zbl 0794.58044 [11] L. Guillopé and M. Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity , Asymptot. Anal. 11 (1995), 1–22. · Zbl 0859.58028 [12] –. –. –. –., Upper bounds on the number of resonances for non-compact complete Riemann surfaces , J. Funct. Anal. 129 (1995), 364–389. · Zbl 0841.58063 [13] –. –. –. –., Scattering asymptotics for Riemann surfaces , Ann. of Math. (2) 145 (1997), 597–660. JSTOR: · Zbl 0898.58054 [14] L. Hörmander, The Analysis of Partial Differential Operators, III: Pseudodifferential Operators , Grundlehren Math. Wiss. 274 , Springer, Berlin, 1985. · Zbl 0601.35001 [15] M. S. Joshi and A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds , Acta Math. 184 (2000), 41–86. · Zbl 1142.58309 [16] R. R. Mazzeo, The Hodge cohomology of a conformally compact metric , J. Differential Geom. 28 (1988), 309–339. · Zbl 0656.53042 [17] –. –. –. –., Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds , Amer. J. Math. 113 (1991), 25–45. JSTOR: · Zbl 0725.58044 [18] R. R. Mazzeo and R. B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature , J. Funct. Anal. 75 (1987), 260–310. · Zbl 0636.58034 [19] R. B. Melrose, Differential analysis on manifolds with corners , in preparation, preprint, http://www-math.mit.edu/\(\sim\)rbm/ [20] S. J. Patterson and P. A. Perry, The divisor of Selberg’s zeta function for Kleinian groups , Duke Math. J. 106 (2001), 321–390. · Zbl 1012.11083 [21] P. A. Perry, The Laplace operator on a hyperbolic manifold, II: Eisenstein series and the scattering matrix , J. Reine Angew. Math. 398 (1989), 67–91. · Zbl 0677.58044 [22] –. –. –. –., The Selberg zeta function and a local trace formula for Kleinian groups , J. Reine Angew. Math. 410 (1990), 116–152. · Zbl 0697.10027 [23] A. Sá Barreto, Radiation fields, scattering and inverse scattering on asymptotically hyperbolic manifolds , to appear in Duke Math. J. 129 , · Zbl 1154.58310 [24] A. Sá Barreto and M. Zworski, Distribution of resonances for spherical black holes , Math. Res. Lett. 4 (1997), 103–121. · Zbl 0883.35120 [25] M. A. Shubin, Pseudodifferential Operators and Spectral Theory , Springer Ser. Soviet Math., Springer, Berlin, 1987. · Zbl 0616.47040 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.