×

Identification of multitype branching processes. (English) Zbl 1099.62096

Summary: We solve the problem of constructing an asymptotic global confidence region for the means and the covariance matrices of the reproduction distributions involved in a supercritical multitype branching process. Our approach is based on a central limit theorem associated with a quadratic law of large numbers performed by the maximum likelihood or the multidimensional Lotka-Nagaev estimator of the reproduction law means. The extension of this approach to the least squares estimator of the mean matrix is also briefly discussed.

MSC:

62M05 Markov processes: estimation; hidden Markov models
60F15 Strong limit theorems
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60F05 Central limit and other weak theorems
62H12 Estimation in multivariate analysis
62F25 Parametric tolerance and confidence regions
62F12 Asymptotic properties of parametric estimators

References:

[1] Adès, M., Dion, J.-P., Labelle, G. and Nanthi, K. (1982). Recurrence formula and the maximum likelihood estimation of the age in a simple branching process. J. Appl. Probability 19 776–784. · Zbl 0499.62075 · doi:10.2307/3213830
[2] Asmussen, S. and Keiding, N. (1978). Martingale central limit theorems and asymptotic estimation theory for multitype branching processes. Adv. in Appl. Probab. 10 109–129. · Zbl 0391.60076 · doi:10.2307/1426721
[3] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, Berlin. · Zbl 0259.60002
[4] Badalbaev, I. S. and Mukhitdinov, A. (1990). On the limit distribution of some functionals in multitype branching processes. Theory Probab. Appl. 35 625–638. · Zbl 0741.60085 · doi:10.1137/1135095
[5] Carvalho, M. L. (1997). A joint estimator for the eigenvalues of the reproduction mean matrix of a multitype Galton–Watson process. Linear Algebra Appl. 264 189–203. · Zbl 0892.60088 · doi:10.1016/S0024-3795(97)82946-1
[6] Chaâbane, F. (1996). Version forte du théorème de la limite centrale fonctionnel pour les martingales. C. R. Acad. Sci. Paris Sér. I Math. 323 195–198. · Zbl 0858.60023
[7] Chaâbane, F. (2001). Invariance principles with logarithmic averaging for martingales. Studia Sci. Math. Hungar. 37 21–52. · Zbl 0980.60029 · doi:10.1556/SScMath.37.2001.1-2.2
[8] Chaâbane, F. and Maâouia, F. (2000). Théorèmes limites avec poids pour les martingales vectorielles. ESAIM Probab. Statist. 4 137–189. · Zbl 0965.60033 · doi:10.1051/ps:2000103
[9] Chaâbane, F., Maâouia, F. and Touati, A. (1998). Généralisation du théorème de la limite centrale presque-sûr pour les martingales vectorielles. C. R. Acad. Sci. Paris Sér. I Math. 326 229–232. · Zbl 0913.60024 · doi:10.1016/S0764-4442(97)89476-1
[10] Chaâbane, F., Maâouia, F. and Touati, A. (1998). Versions fortes des théorèmes limites en loi pour les martingales vectorielles. · Zbl 0913.60024
[11] Dacunha-Castelle, D. and Duflo, M. (1983). Probabilités et Statistiques 2 . Masson, Paris. · Zbl 0535.62004
[12] Dion, J.-P. (1974). Estimation of the mean and the initial probabilities of a branching process. J. Appl. Probability 11 687–694. · Zbl 0311.62054 · doi:10.2307/3212552
[13] Dion, J.-P. (1975). Estimation of the variance of a branching processes. Ann. Statist. 3 1183–1187. JSTOR: · Zbl 0359.62067 · doi:10.1214/aos/1176343250
[14] Dion, J.-P. (1993). Statistical inference for discrete time branching processes. In Lecture Notes of the 7th Summer School on Probability Theory and Mathematical Statistics (Varna, 1991) 60–121. Scientific, Cultural and Technical Publications, Singapore.
[15] Duflo, M. (1997). Random Iterative Models . Springer, Berlin. · Zbl 0868.62069
[16] Guttorp, P. (1991). Statistical Inference for Branching Processes . Wiley, New York. · Zbl 0778.62077
[17] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application . Academic Press, San Diego. · Zbl 0462.60045
[18] Heyde, C. C. (1974). On estimating the variance of the offspring distribution in a simple branching process. Adv. in Appl. Probab. 6 421–433. · Zbl 0305.60044 · doi:10.2307/1426225
[19] Heyde, C. C. (1997). Quasi-Likelihood and Its Application. A General Approach to Optimal Parameter Estimation . Springer, Berlin. · Zbl 0879.62076 · doi:10.1007/b98823
[20] Heyde, C. C. and Leslie, J. R. (1971). Improved classical limit analogues for Galton–Watson processes with or without immigration. Bull. Austral. Math. Soc. 5 145–155. · Zbl 0219.60070 · doi:10.1017/S0004972700047018
[21] Heyde, C. C. and Senata, E. (1971). Analogues of classical limit theorems for the supercritical Galton–Watson process with immigration. Math. Biosci. 11 249–259. · Zbl 0224.60042 · doi:10.1016/0025-5564(71)90086-1
[22] Keiding, N. and Lauritzen, S. L. (1978). Marginal maximum likelihood estimates and estimation of the offspring mean in a branching process. Scand. J. Statist. 5 106–110. · Zbl 0378.62074
[23] Kesten, H. and Stigum, B. P. (1966). A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Statist. 37 1211–1223. · Zbl 0203.17401 · doi:10.1214/aoms/1177699266
[24] Kesten, H. and Stigum, B. P. (1966). Additional limit theorems for indecomposable multidimensional Galton–Watson processes. Ann. Math. Statist. 37 1463–1481. · Zbl 0203.17402 · doi:10.1214/aoms/1177699139
[25] Mode, C. J. (1971). Multitype Branching Processes . North-Holland, New York. · Zbl 0219.60061
[26] Nanthi, K. (1982). Estimation of the variance for the multitype Galton–Watson process. J. Appl. Probab. 19 408–414. · Zbl 0489.62078 · doi:10.2307/3213492
[27] Touati, A. (1993). Two theorems on convergence in distribution for stochastic integrals and statistical applications. Theory Probab. Appl. 38 95–117. · Zbl 0802.60050
[28] Touati, A. (1996). Vitesse de convergence en loi de l’estimateur des moindres carrés d’un modèle autorégressif (cas mixte). Ann. Inst. H. Poincaré Probab. Statist. 32 211–230. · Zbl 0856.60041
[29] Wei, C. Z. (1985). Asymptotic properties of least-squares estimates in stochastic regression models. Ann. Statist. 13 1498–1508. JSTOR: · Zbl 0582.62062 · doi:10.1214/aos/1176349751
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.