×

zbMATH — the first resource for mathematics

Rational Krylov for nonlinear eigenproblems, an iterative projection method. (English) Zbl 1099.65037
Summary: In recent papers A. Ruhe suggested a rational Krylov method for nonlinear eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov method for the linearized problem. In this note we point out that the method can be understood as an iterative projection method. Similarly to the Arnoldi method the search space is expanded by the direction from residual inverse iteration. Numerical methods demonstrate that the rational Krylov method can be accelerated considerably by replacing an inner iteration by an explicit solver of projected problems.

MSC:
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F50 Computational methods for sparse matrices
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
Software:
JDQR; JDQZ
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] W. E. Arnoldi: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9 (1951), 17–29. · Zbl 0042.12801
[2] Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. A. van der Vorst, eds.). SIAM, Philadelphia, 2000.
[3] T. Betcke, H. Voss: A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems. Future Generation Computer Systems 20 (2004), 363–372.
[4] C. Conca, J. Planchard, and M. Vanninathan: Existence and location of eigenvalues for fluid-solid structures. Comput. Methods Appl. Mech. Eng. 77 (1989), 253–291. · Zbl 0734.73063
[5] P. Hager: Eigenfrequency Analysis. FE-Adaptivity and a Nonlinear Eigenvalue Problem. PhD. thesis. Chalmers University of Technology, Goteborg, 2001.
[6] P. Hager, N. E. Wiberg: The rational Krylov algorithm for nonlinear eigenvalue problems. In: Computational Mechanics for the Twenty-First Century (B. H. V. Topping, ed.). Saxe-Coburg Publications, Edinburgh, 2000, pp. 379–402.
[7] E. Jarlebring: Krylov Methods for Nonlinear Eigenvalue Problems. Master thesis. Royal Institute of Technology. Dept. Numer. Anal. Comput. Sci., Stockholm, 2003.
[8] V. N. Kublanovskaya: On an application of Newton’s method to the determination of eigenvalues of {\(\lambda\)}-matrices. Dokl. Akad. Nauk. SSSR 188 (1969), 1240–1241. · Zbl 0242.65042
[9] V. N. Kublanovskaya: On an approach to the solution of the generalized latent value problem for {\(\lambda\)}-matrices. SIAM. J. Numer. Anal. 7 (1970), 532–537. · Zbl 0225.65048
[10] C. Lanczos: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards 45 (1950), 255–282.
[11] A. Neumaier: Residual inverse iteration for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 22 (1985), 914–923. · Zbl 0594.65026
[12] J. Planchard: Eigenfrequencies of a tube bundle placed in a confined fluid. Comput. Methods Appl. Mech. Eng. 30 (1982), 75–93. · Zbl 0483.70016
[13] A. Ruhe: Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10 (1973), 674–689. · Zbl 0261.65032
[14] A. Ruhe: Computing nonlinear eigenvalues with spectral transformation Arnoldi. Z. Angew. Math. Mech. 76 (1996), 17–20. · Zbl 0886.65055
[15] A. Ruhe: Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput. 19 (1998), 1535–1551. · Zbl 0914.65036
[16] A. Ruhe: The rational Krylov algorithm for nonlinear matrix eigenvalue problems. Zap. Nauchn. Semin. POMI 268 (2000), 176–180. · Zbl 1029.65035
[17] G. L. Sleijpen, G. L. Booten, D. R. Fokkema, and H. A. van der Vorst: Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36 (1996), 595–633. · Zbl 0861.65035
[18] G. L. Sleijpen, H. A. van der Vorst: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17 (1996), 401–425. · Zbl 0860.65023
[19] H. Voss: An Arnoldi method for nonlinear eigenvalue problems. BIT 44 (2004), 387–401. · Zbl 1066.65059
[20] H. Voss: An Arnoldi method for nonlinear symmetric eigenvalue problems. In: Online Proceedings of the SIAM Conference on Applied Linear Algebra, Williamsburg, 2003, http://www.siam.org/meetings/laa03/. · Zbl 1354.65077
[21] H. Voss: Initializing iterative projection methods for rational symmetric eigenproblems. In: Online Proceedings of the Dagstuhl Seminar Theoretical and Computational Aspects of Matrix Algorithms, Schloss Dagstuhl 2003, ftp://ftp.dagstuhl.de/pub/Proceedings/03/03421/03421.VoszHeinrich.Other.pdf, 2003.
[22] H. Voss: A Jacobi-Davidson method for nonlinear eigenproblems. In: Computational Science–ICCS 2004, 4th International Conference, Krakow, Poland, June 6–9, 2004, Proceedings, Part II, Vol. 3037 of Lecture Notes in Computer Science (M. Buback, G. D. van Albada, P. M. A. Sloot, and J. J. Dongarra, eds.). Springer-Verlag, Berlin, 2004, pp. 34–41.
[23] H. Voss, B. Werner: A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems. Math. Methods Appl. Sci. 4 (1982), 415–424. · Zbl 0489.49029
[24] W. H. Yang: A method for eigenvalues of sparse {\(\lambda\)}-matrices. Int. J. Numer. Methods Eng. 19 (1983), 943–948. · Zbl 0517.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.