Vejchodský, Tomáš Fully discrete error estimation by the method of lines for a nonlinear parabolic problem. (English) Zbl 1099.65091 Appl. Math., Praha 48, No. 2, 129-151 (2003). The author considers approximate solution of a nonlinear second-order parabolic problem in one space dimension with homogeneous Dirichlet boundary conditions. The finite space interval is discretized and a hierarchical basis of finite elements with polynomials of the degree \(p\) is employed. A singly implicit Runge-Kutta method is used for the time discretization. A posteriori error estimates are defined by means of “bubble functions” of the degree \(p + 1\).The author assumes that the norms of the spatial and time discretization are proportional and tend to zero. Then he proves that the ratio of the \(H^{-1}\)-norms of the a posteriori error estimate and the actual error, respectively, tends to one. Reviewer: Ivan Hlaváček (Praha) Cited in 1 Document MSC: 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 65M20 Method of lines for initial value and initial-boundary value problems involving PDEs 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs Keywords:a posteriori error estimates; finite elements PDF BibTeX XML Cite \textit{T. Vejchodský}, Appl. Math., Praha 48, No. 2, 129--151 (2003; Zbl 1099.65091) Full Text: DOI EuDML OpenURL References: [1] A. Adjerid, J. E. Flaherty and Y. J. Wang: A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems. Numer. Math. 65 (1993), 1-21. · Zbl 0791.65070 [2] J. C. Butcher: A transformed implicit Runge-Kutta method. J. Assoc. Comput. Mach. 26 (1979), 731-738. · Zbl 0439.65057 [3] K. Burrage: A special family of Runge-Kutta methods for solving stiff differential equations. BIT 18 (1978), 22-41. · Zbl 0384.65034 [4] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978. · Zbl 0383.65058 [5] S. Fučík, A. Kufner: Nonlinear Differential Equations. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1980. [6] H. Gajevski, K. Gröger and K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974. · Zbl 0289.47029 [7] I. Hlaváček, M. Křížek and J. Malý: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168-189. · Zbl 0802.65113 [8] S. Larsson, V. Thomée and N. Y. Zhang: Interpolation of coefficients and transformation of the dependent variable in the finite element methods for the nonlinear heat equation. Math. Methods Appl. Sci. 11 (1989), 105-124. · Zbl 0663.65118 [9] P. K. Moore: A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension. SIAM J. Numer. Anal. 31 (1994), 149-169. · Zbl 0798.65089 [10] P. K. Moore, J. E. Flaherty: High-order adaptive solution of parabolic equations I. Singly implicit Runge-Kutta methods and error estimation. Rensselaer Polytechnic Institute Report 91-12, Troy, NY, Department of Computer Science, Rensselaer Polytechnic Institute, 1991. [11] P. K. Moore, J. E. Flaherty: High-order adaptive finite element-singly implicit Runge-Kutta methods for parabolic differential equations. BIT 33 (1993), 309-331. · Zbl 0802.65099 [12] T. Roubíček: Nonlinear differential equations and inequalities. Mathematical Institute of Charles University, Prague, in preparation. · Zbl 0908.49018 [13] K. Segeth: A posteriori error estimation with the finite element method of lines for a nonlinear parabolic equation in one space dimension. Numer. Math. 33 (1999), 455-475. · Zbl 0936.65113 [14] B. Szabó, I. Babuška: Finite Element Analysis. John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1991. · Zbl 0792.73003 [15] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, 1997. · Zbl 0884.65097 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.