×

zbMATH — the first resource for mathematics

An analysis of discontinuous Galerkin methods for elliptic problems. (English) Zbl 1099.65116
The authors develop an analysis of discontinuous Galerkin methods for elliptic problems where local and global behaviour is theoretically established. These theoretical foundation is applied to develop local/parallel and adaptive finite element methods with defined procedures. No numerical experiments are presented.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65Y05 Parallel numerical computation
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975).
[2] D.N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982) 742–760. · Zbl 0482.65060
[3] D.N. Arnold, F. Brezzi, B. Cockburn and D. Marini, Discontinuous Galerkin methods for elliptic problems, in: Discontinuous Galerkin Methods, eds. B. Cockburn, G.E. Karniadakis and C.-W. Shu, Lectures in Computational Science and Engineering, Vol. 11 (Springer, Berlin, 2000) pp. 89–101. · Zbl 0948.65127
[4] D.N. Arnold, F. Brezzi, B. Cockburn and D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/2002) 1749–1779. · Zbl 1008.65080
[5] I. Babuska, The finite element method with penalty, Math. Comp. 27 (1973) 221–228. · Zbl 0237.65066
[6] I. Babuska and A.D. Miller, A feedback finite element method with a posteriori error estimation, Part 1, Comput. Methods Appl. Mech. Engrg. 61 (1987) 1–40. · Zbl 0593.65064
[7] I. Babuska and C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736–754. · Zbl 0398.65069
[8] I. Babuska, O.C. Zienkiewicz, J. Gago and E.R. de A. Oliveira, Accuracy Estimates and Adaptive Refinements in Finite Element Computations (Wiley, New York, 1986). · Zbl 0663.65001
[9] I. Babuska and M. Zlamal, Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal. 10 (1973) 863–875. · Zbl 0266.65071
[10] R.E. Bank, Hierarchical bases and the finite element method, Acta Numerica 5 (1996) 1–43. · Zbl 0865.65078
[11] R.E. Bank and M. Holst, A new paradigm for parallel adaptive meshing algorithms, SIAM J. Sci. Comput. 22 (2001) 1411–1443. · Zbl 0979.65110
[12] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations, J. Comput. Phys. 131 (1997) 267–279. · Zbl 0871.76040
[13] C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for convection–diffusion problems, Comput. Methods Appl. Mech. Engrg. 175 (1999) 311–341. · Zbl 0924.76051
[14] R. Becker and P. Hansbo, A finite element method for domain decomposition with non-matching grids, Report No. 3616, RINRIA (1999). · Zbl 1047.65099
[15] C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements, SIAM J. Numer. Anal. 35 (1998) 1893–1916. · Zbl 0913.65007
[16] C.L. Bottasso, S. Micheletti and R. Sacco, The discontinuous Petrov–Galerkin method for elliptic problems, Comput. Methods Appl. Mech. Engrg. 191 (2002) 3391–3409. · Zbl 1010.65050
[17] F. Brezzi, G. Manzini, D. Marini, P. Pietra and A. Russo, Discontinuous Galerkin approximations for elliptic problems, Numer. Methods Partial Differential Equations 16 (2000) 365–378. · Zbl 0957.65099
[18] C. Carstensen and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods, SIAM J. Numer. Anal. 36 (1999) 1571–1587. · Zbl 0938.65124
[19] P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000) 1676–1706. · Zbl 0987.65111
[20] P. Castillo, B. Cockburn, D. Schötzau and C. Schwab, Optimal a priori error estimates for thehp-version of the local discontinuous Galerkin method for convection–diffusion problems, Math. Comp. 71 (2002), 455–478. · Zbl 0997.65111
[21] P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I) (North-Holland, Amsterdam, 1991). · Zbl 0712.65091
[22] P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numer. 9 (1975) 77–84.
[23] B. Cockburn, G.E. Karniadakis and C.-W. Shu, Discontinuous Galerkin Methods, Lectures in Computational Science and Engineering, Vol. 11 (Springer, Berlin, 2000).
[24] B. Cockburn, G.E. Karniadakis and C.-W. Shu, The development of discontinuous Galerkin methods, in: Discontinuous Galerkin Methods, eds. B. Cockburn, G.E. Karniadakis and C.-W. Shu, Lectures in Computational Science and Engineering, Vol. 11 (Springer, Berlin, 2000) pp. 1–50. · Zbl 0989.76045
[25] J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, in: Lecture Notes in Physics, Vol. 58 (1976) pp. 207–216.
[26] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numerica (1995) 105–158. · Zbl 0829.65122
[27] Q. Lin and A. Zhou, Some arguments for recovering the finite element error of hyperbolic problems, Acta Math. Sci. 11 (1991) 471–476.
[28] J.A. Nitsche, Über ein Variationsprinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unteworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. · Zbl 0229.65079
[29] J.A. Nitsche and A.H. Schatz, Interiori estimates for Ritz–Galerkin methods, Math. Comp. 28 (1974) 937–955. · Zbl 0298.65071
[30] J.T. Oden, I. Babuska and C.E. Baumann, A discontinuous hp finite element method for diffusion problems, J. Comput. Phys. 146 (1998) 491–519. · Zbl 0926.65109
[31] B. Riviere and F. Wheeler, A discontinuous Galerkin method applied to nonlinear parabolic equations, in: Discontinuous Galerkin Methods, eds. B. Cockburn, G.E. Karniadakis and C.-W. Shu, Lectures in Computational Science and Engineering, Vol. 11 (Springer, Berlin, 2000) pp. 231–244. · Zbl 0946.65078
[32] B. Riviere, M.F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal. 39 (2001) 902–931. · Zbl 1010.65045
[33] A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods, Math. Comp. 31 (1977) 414–442. · Zbl 0364.65083
[34] A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods, Part II, Math. Comp. 64 (1995) 907–928. · Zbl 0826.65091
[35] L.R. Scott and S. Zhang, Finite element interpolation of mpon-smooth functions satisfying boundary conditions, Math. Comp. 54 (1992) 483–493. · Zbl 0696.65007
[36] E. Süli, C. Schwab and P. Houston, hp-DGFEM for partial differential equations with nonnegative characteristic form, in: Discontinuous Galerkin Methods, eds. B. Cockburn, G.E. Karniadakis and C.-W. Shu, Lectures in Computational Science and Engineering, Vol. 11 (Springer, Berlin, 2000) pp. 221–230. · Zbl 0946.65102
[37] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62 (1994) 445–475. · Zbl 0799.65112
[38] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic equations, Bericht Nr. 180, Fakultät für Mathematik, Ruhr-Universität Bochum (1995).
[39] R. Verfürth, A Review of A-Posteriori Error Estimation and Adaptive Mesh Refinement (Wiley/Teubner, 1996). · Zbl 0853.65108
[40] R. Verfürth, A posteriori error estimators for convection-diffusion equations, Numer. Math. 80 (1998) 641–663. · Zbl 0913.65095
[41] L.B. Wahlbin, Local behavior in finite element methods, in [17] (1991) 355–522. · Zbl 0875.65089
[42] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1978) 152–161. · Zbl 0384.65058
[43] B.I. Wohlmuth, A residual based error estimator for mortar finite element discretizations, Numer. Math. 84 (1999) 143–171. · Zbl 0962.65090
[44] J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp. 69 (2000) 881–909. · Zbl 0948.65122
[45] J. Xu and A. Zhou, Locality and parallelization of finite elements, in: Proc. of the 11th Domain Decomposition Methods, eds. C.H. Lai, P.E. Bjørstad, M. Cross and O.B. Widlund, DDM.org (1999) pp. 140–147.
[46] N. Yan, A posteriori error estimators of gradient recovery type for elliptic obstacle problems, Adv. Comput. Math. 15 (2001) 333–362. · Zbl 0991.65112
[47] N. Yan and A. Zhou, Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. Methods Appl. Mech. Engrg. 190 (2001) 4289–4399. · Zbl 0986.65098
[48] A. Zhou, C.L. Liem, T.M. Shih and T. Lü, Error analysis on bi-parameter finite elements, Comput. Methods Appl. Mech. Engrg. 158 (1998) 329–339. · Zbl 0945.65122
[49] O.C. Zienkiewicz and J.Z. Zhu, The supercovergent patch recovery and a posteriori error estimates, Internat. J. Numer. Methods Engrg. 33 (1992) 1331–1382. · Zbl 0769.73084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.