×

Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities. (English) Zbl 1099.74021

Summary: The paper deals with approximations and numerical realization of a class of hemivariational inequalities used for modeling of delamination and nonmonotone friction problems. Assumptions guaranteeing convergence of discrete models are verified, and numerical results of several model examples computed by a nonsmooth variant of Newton method are presented.

MSC:

74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
74M10 Friction in solid mechanics
74M15 Contact in solid mechanics
74R99 Fracture and damage

Software:

PNEW

References:

[2] R. Glowinski, J.-L. Lions, R. Trémolières: Numerical Analysis of Variational Inequalities. Studies in Mathematics and its Applications, Vol. 8. North Holland, Amsterdam, New York, 1981.
[6] L. Lukšan, J. Vlček: PBUN, PNEW–a bundle type algorithms for nonsmooth optimization. Technical Report No. V-718, Sept. 1997.
[7] Topics in Nonsmooth Mechanics (J. J. Moreau, P. D. Panagiotopoulos, and G. Strang, eds.). Birkhäuser-Verlag, Basel, 1988.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.