×

Hadron resonance mass spectrum and lattice QCD thermodynamics. (English) Zbl 1099.81564

Summary: We confront lattice QCD results on the transition from the hadronic phase to the quark-gluon plasma with hadron resonance gas and percolation models. We argue that for \(T\leq T_c\) the equation of state derived from Monte Carlo simulations of (2+1) quark-flavor QCD can be well described by a hadron resonance gas. We examine the quark mass dependence of the hadron spectrum on the lattice and discuss its description in terms of the MIT bag model. This is used to formulate a resonance gas model for arbitrary quark masses which can be compared to lattice calculations. We finally apply this model to the analysis of the quark mass dependence of the critical temperature obtained in lattice calculations. We show that the value of \(T_c\) for different quark masses agrees with lines of constant energy density in a hadron resonance gas. For large quark masses a corresponding contribution from a glueball resonance gas is required.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T25 Quantum field theory on lattices
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] L.D. McLerran, B. Svetitsky, Phys. Lett. B 98, 195 (1981)
[2] R. Hagedorn, Nuovo Cimento 35, 395 (1965)
[3] N. Cabibbo, G. Parisi, Phys. Lett. B 59, 67 (1975)
[4] G. Baym, Physica A 96, 131 (1979)
[5] P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B 518, 41 (2001) · Zbl 01651295
[6] For a recent review see for instance: P. Braun-Munzinger, K. Redlich, J. Stachel, Particle Production in Heavy Ion Collisions, to appear in Quark Gluon Plasma 3, edited by R. Hwa, X.-N. Wang
[7] F. Karsch, Lect. Notes. Phys. 583, 202 (2002)
[8] F. Karsch, A. Patkos, P. Petreczky, Phys. Lett. B 401, 69 (1997)
[9] H. Satz, Nucl. Phys. A 642, 130 (1998)
[10] P. Gerber, H. Leutwyler, Nucl. Phys. B 321, 387 (1989)
[11] H. Meyer-Ortmanns, B.-J. Schaefer, Phys. Rev. D 53, 6586 (1996)
[12] J. Berges, D. U. Jungnickel, C. Wetterich, Phys. Rev. D 59, 034010 (1999)
[13] C. Michael, Glueballs, hybrid and exotic mesons, hep-ph/0101287
[14] N. Ishii, H. Suganuma, H. Matsufuru, Phys. Rev. D 66, 094506 (2002)
[15] G. Bali (SESAM Coll.), Phys. Rev. D 62, 054503 (2000)
[16] J. Letessier, J. Rafelski, Cambridge Monogr. Part. Phys. Nucl. Cosmol. 18, 1 (2002), and references therein
[17] F. Karsch, E. Laermann, A. Peikert, Nucl. Phys. B 605, 579 (2001)
[18] T. DeGrand, R.L. Jaffe, K. Johnson, J. Kiskis, Phys. Rev. D 15, 2060 (1975)
[19] C. Bernard, Phys. Rev. D 56, 5584 (1997) and references therein
[20] A. Ali Khan (CP-PACS Coll.), Phys. Rev. D 63, 034502 (2001)
[21] R.G. Edwards, U.M. Heller, Phys. Lett. B 462, 132 (1999)
[22] A. Peikert, QCD thermodynamics with $2+1$ quark flavours in lattice simulations, Ph.D. thesis, University of Bielefeld (2000)
[23] S. Aoki (CP-PACS Coll.), Phys. Rev. D 67, 034503 (2003)
[24] LHPC Collaboration: D.G. Richards, QCDSF Collaboration: M. Göckeler, R. Horsley, D. Pleiter, P.E.L. Rakow, G. Schierholz, UKQCD Collaboration: C.M. Maynard, Nucl. Phys. Proc. Suppl. 109, 89 (2002) · Zbl 01774777
[25] F.X. Lee, D.B. Leinweber, Phys. Rev. D 59, 074505 (1999)
[26] F. Karsch, E. Laermann, A. Peikert, Phys. Lett. B 478, 447 (2000)
[27] For a recent compilation of data see for instance: F. Karsch, E. Laermann, Thermodynamics and in-medium hadron properties from lattice QCD, to appear in Quark Gluon Plasma 3, edited by R. Hwa, X.-N. Wang · Zbl 1330.81198
[28] F. Karsch, Nucl. Phys. A 698, 199c (2002) · Zbl 0994.81124
[29] R.D. Pisarski, O. Alvarez, Phys. Rev. D 26, 3735 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.