×

On sampling distributions for coalescent processes with simultaneous multiple collisions. (English) Zbl 1099.92052

Summary: Recursions for a class of sampling distributions of allele configurations are derived for the situation where the genealogy of the underlying population is modelled by a coalescent process with simultaneous multiple collisions of ancestral lineages. These recursions describe a new family of partition structures in terms of the composition probability function, parametrized by the infinitesimal rates of the coalescent process. For the J. F. C. Kingman coalescent process [Stochastic Processes Appl. 13, 235–248 (1982; Zbl 0491.60076)] with only binary mergers of ancestral lines, the recursion reduces to that known for the classical Ewens sampling distribution. We solve the recursion for the star-shaped coalescent. The asymptotic behaviour of the number \(K_n\) of alleles (types) for large sample size n is studied, in particular for the star-shaped coalescent and the E. Bolthausen and A.-S. Sznitman [Commun. Math. Phys. 197, No. 2, 247–276 (1998; Zbl 0927.60071)] coalescent.

MSC:

92D10 Genetics and epigenetics
60J25 Continuous-time Markov processes on general state spaces
60J27 Continuous-time Markov processes on discrete state spaces
PDFBibTeX XMLCite
Full Text: Euclid

References:

[1] Bertoin, J. and Le Gall, J.F. (2000) The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields, 117, 249-266. · Zbl 0963.60086 · doi:10.1007/s004400000053
[2] Bolthausen, E. and Sznitman, A.-S. (1998) On Ruellés probability cascades and an abstract cavity method. Comm. Math. Phys., 197, 247-276. · Zbl 0927.60071 · doi:10.1007/s002200050450
[3] Cannings C. (1974) The latent roots of certain Markov chains arising in genetics: a new approach, I. Haploid models. Adv. Appl. Probab., 6, 260-290. JSTOR: · Zbl 0284.60064 · doi:10.2307/1426293
[4] Gnedin, A. and Pitman, J. (2005) Regenerative composition structures. Ann. Probab., 33, 445-479. · Zbl 1070.60034 · doi:10.1214/009117904000000801
[5] Griffiths, R.C. and Lessard, S. (2005) Ewensśampling formula and related formulae: combinatorial proofs, extensions to variable population size and applications to ages of alleles. Theoret. Popul. Biol. · Zbl 1085.92027
[6] Griffiths, R.C. and Tavaré, S. (1996) Monte Carlo inference methods in population genetics. Math. Comput. Modelling, 23, 141-158. · Zbl 0853.92014 · doi:10.1016/0895-7177(96)00046-5
[7] Johnson, N.L., Kotz, S. and Kemp A.W. (1992) Univariate Discrete Distributions, 2nd edn. New York: Wiley. · Zbl 0773.62007
[8] Joyce, P., Krone, S.M. and Kurtz, T.G. (2002) Gaussian limits associated with the Poisson-Dirichlet distribution and the Ewens sampling formula. Ann. Appl. Probab., 12, 101-124. · Zbl 1010.62101 · doi:10.1214/aoap/1015961157
[9] Kingman, J.F.C. (1977) The population structure associated with the Ewens sampling formula. Theoret. Popul. Biol., 11, 274-283. · Zbl 0421.92011 · doi:10.1016/0040-5809(77)90029-6
[10] Kingman, J.F.C. (1982a) On the genealogy of large populations. J. Appl. Probab., 19A, 27-43. · Zbl 0516.92011 · doi:10.2307/3213548
[11] Kingman, J.F.C. (1982b) Exchangeability and the evolution of large populations. In G. Koch and F. Spizzichino (eds), Exchangeability in Probability and Statistics, pp. 97-112. Amsterdam: North-Holland. · Zbl 0494.92011
[12] Kingman, J.F.C. (1982c) The coalescent. Stochastic Process. Appl., 13, 235-248. · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4
[13] Kingman, J.F.C. (2000) Origins of the coalescent: 1974-1982. Genetics, 156, 1461-1463. · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4
[14] Möhle, M. and Sagitov, S. (2001) A classification of coalescent processes for haploid exchangeable population models. Ann. Probab., 29, 1547-1562. · Zbl 1013.92029 · doi:10.1214/aop/1015345761
[15] Pitman, J. (1995) Exchangeable and partially exchangeable random partitions. Probab. Theory Related Fields, 102, 145-158. · Zbl 0821.60047 · doi:10.1007/BF01213386
[16] Pitman, J. (1999) Coalescents with multiple collisions. Ann. Probab., 27, 1870-1902. · Zbl 0963.60079 · doi:10.1214/aop/1022677552
[17] Pitman, J. (2002) Combinatorial stochastic processes. Technical Report 621, Department of Statistics, University of California, Berkeley.
[18] Rosenblatt, M. (1959) Functions of a Markov process that are Markovian. J. Math. Mech., 8, 585-596. · Zbl 0100.34403
[19] Sagitov, S. (1999) The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab., 36, 1116-1125. · Zbl 0962.92026 · doi:10.1239/jap/1032374759
[20] Schweinsberg, J. (2000a) A necessary and sufficient condition for the \Lambda -coalescent to come down from infinity. Electron. Comm. Probab., 5, 1-11. · Zbl 0953.60072
[21] Schweinsberg, J. (2000b) Coalescents with simultaneous multiple collisions. Electron. J. Probab., 5, 1-50. · Zbl 0959.60065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.