×

zbMATH — the first resource for mathematics

Persistence and global stability of a population in a polluted environment with delay. (English) Zbl 1099.92074
Summary: This article concentrates on the study of delay effects on a model of single species in a polluted closed environment. The cases of constant emission and instantaneous spill of a toxicant are considered in the model study. Sufficient criteria on persistence of the population are derived. A global attractivity condition for the positive equilibrium is obtained.
Reviewer: Reviewer (Berlin)

MSC:
92D40 Ecology
34D23 Global stability of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barbalat I., Rev. Roumaine. Math. Pures. Appl. 4 pp 267– (1959)
[2] DOI: 10.1016/S0025-5564(98)10076-7 · doi:10.1016/S0025-5564(98)10076-7
[3] DOI: 10.1090/S0002-9939-1986-0822433-4 · doi:10.1090/S0002-9939-1986-0822433-4
[4] DOI: 10.1016/0304-3800(87)90115-3 · doi:10.1016/0304-3800(87)90115-3
[5] Dubey B., Indian J. Pure Appl. Math. 28 pp 1– (1997)
[6] DOI: 10.1016/S0304-3800(00)00228-3 · doi:10.1016/S0304-3800(00)00228-3
[7] DOI: 10.1006/jmaa.2000.6741 · Zbl 0952.92030 · doi:10.1006/jmaa.2000.6741
[8] DOI: 10.1006/jmaa.1998.6221 · Zbl 0981.92037 · doi:10.1006/jmaa.1998.6221
[9] DOI: 10.1007/BF00168004 · Zbl 0825.92125 · doi:10.1007/BF00168004
[10] DOI: 10.1007/BF00275908 · Zbl 0548.92019 · doi:10.1007/BF00275908
[11] DOI: 10.1016/0304-3800(83)90019-4 · doi:10.1016/0304-3800(83)90019-4
[12] DOI: 10.1016/S0022-5193(84)80090-9 · doi:10.1016/S0022-5193(84)80090-9
[13] DOI: 10.1007/BF00275641 · Zbl 0606.92022 · doi:10.1007/BF00275641
[14] Hass C. N., J. Water Pollut. Contr. Fed 53 pp 378– (1981)
[15] DOI: 10.1007/BF03167323 · Zbl 0982.92035 · doi:10.1007/BF03167323
[16] DOI: 10.1016/0143-1471(82)90143-X · doi:10.1016/0143-1471(82)90143-X
[17] DOI: 10.1142/S0218339096000090 · doi:10.1142/S0218339096000090
[18] DOI: 10.1007/s002850050091 · Zbl 0893.92035 · doi:10.1007/s002850050091
[19] DOI: 10.1016/0025-5564(95)00091-7 · Zbl 0844.92026 · doi:10.1016/0025-5564(95)00091-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.