×

zbMATH — the first resource for mathematics

Orbit equivalence and actions of \(\mathbb F_n\). (English) Zbl 1100.03040
Summary: We show that there are “\(E_0\) many” orbit inequivalent free actions of the free groups \(\mathbb{F}_n\), \(1\leq n\leq\infty\), by measure preserving transformations on a standard Borel probability space. In particular, there are uncountably many such actions.

MSC:
03E15 Descriptive set theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lecture Notes in Mathematics 1852 (2004) · Zbl 1177.00007
[2] DOI: 10.1090/S0273-0979-1980-14702-3 · Zbl 0427.28018
[3] DOI: 10.2307/2373108 · Zbl 0191.42803
[4] DOI: 10.2307/2372852 · Zbl 0087.11501
[5] Astérisque 175 (1989)
[6] Ergodic Theory Dynamical Systems 1 pp 431– (1981)
[7] Journal für die reine und angewandte Mathematik 413 pp 36– (1991)
[8] London Mathematical Society Lecture Notes 232 (1996)
[9] Classical descriptive set theory (1995)
[10] DOI: 10.1007/BF01075866 · Zbl 0168.27602
[11] DOI: 10.1142/S0219061302000138 · Zbl 1008.03031
[12] DOI: 10.4064/fm175-3-2 · Zbl 1021.03042
[13] DOI: 10.1090/S0894-0347-1990-1057041-5
[14] Lectures on ergodic theory (1956)
[15] DOI: 10.1007/BF02760962 · Zbl 0479.28017
[16] Publications Mathématiques Institut de Hautes Études Scientifiques (2001)
[17] DOI: 10.1007/BF02760961 · Zbl 0485.28018
[18] London Mathematical Society Monographs, new series 22 (2001)
[19] Rigidity in dynamics and geometry (Cambridge 2000) pp 167– (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.