Labutin, Denis A. Potential estimates for a class of fully nonlinear elliptic equations. (English) Zbl 1100.35036 Duke Math. J. 111, No. 1, 1-49 (2002). Summary: We study the pointwise properties of \(k\)-subharmonic functions, that is, the viscosity subsolutions to the fully nonlinear elliptic equations \(F_k[u]=0\), where \(F_k[u]\) is the elementary symmetric function of order \(k,1\leq k\leq n\), of the eigenvalues of \([D^ 2u]\), \(F_1[u]=\Delta u,F_n[u]=\det D^2u\). Thus \(1\)-subharmonic functions are subharmonic in the classical sense; \(n\)-subharmonic functions are convex. We use a special capacity to investigate the typical questions of potential theory: local behaviour, removability of singularities, and polar, negligible, and thin sets, and we obtain estimates for the capacity in terms of the Hausdorff measure. We also prove the Wiener test for the regularity of a boundary point for the Dirichlet problem for the fully nonlinear equation \(F_k[u]=0\). The crucial tool in the proofs of these results is the Radon measure \(F_k[u]\) introduced recently by N. Trudinger and X.-J. Wang for any \(k\)-subharmonic \(u\). We use ideas from the potential theories both for the complex Monge-Ampère and for the \(p\)-Laplace equations. Cited in 79 Documents MSC: 35J60 Nonlinear elliptic equations 31B15 Potentials and capacities, extremal length and related notions in higher dimensions 31C45 Other generalizations (nonlinear potential theory, etc.) PDF BibTeX XML Cite \textit{D. A. Labutin}, Duke Math. J. 111, No. 1, 1--49 (2002; Zbl 1100.35036) Full Text: DOI References: [1] D. R. Adams, “Potential and capacity before and after Wiener” in Proceedings of the Norbert Wiener Centenary Congress (East Lansing, Mich., 1994) , Proc. Sympos. Appl. Math. 52 , Amer. Math. Soc., Providence, 1997, 63–83. · Zbl 0932.31001 [2] –. –. –. –., review of Fine Regularity of Solutions of Elliptic Partial Differential Equations by J. Malý and W. P. Ziemer, Bull. London Math. Soc. 31 (1999), 248–250. [3] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory , Grundlehren Math. Wiss. 314 , Springer, Berlin, 1996. [4] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions , Acta Math. 149 (1982), 1–40. · Zbl 0547.32012 [5] L. A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations , Amer. Math. Soc. Colloq. Publ. 43 , Amer. Math. Soc., Providence, 1995. · Zbl 0834.35002 [6] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations, III: Functions of the eigenvalues of the Hessian , Acta Math. 155 (1985), 261–301. · Zbl 0654.35031 [7] H. Cartan, Théorie du potentiel newtonien: énergie, capacité, suites de potentiels , Bull. Soc. Math. France 73 (1945), 74–106. · Zbl 0061.22609 [8] G. Choquet, Theory of capacities , Ann. Inst. Fourier (Grenoble) 5 (1953), 131–295. · Zbl 0064.35101 [9] M. G. Crandall, “Viscosity solutions: A primer” in Viscosity Solutions and Applications (Montecatini Terme, Italy, 1995) , Lecture Notes in Math. 1660 , Springer, Berlin, 1997, 1–43. · Zbl 0901.49026 [10] M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations , Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1–67. · Zbl 0755.35015 [11] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle , Comm. Math. Phys. 68 (1979), 209–243. · Zbl 0425.35020 [12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order , 2d ed., Grundlehren Math. Wiss. 224 , Springer, Berlin, 1983. · Zbl 0562.35001 [13] B. Guan, The Dirichlet problem for a class of fully nonlinear elliptic equations , Comm. Partial Differential Equations 19 (1994), 399–416. · Zbl 0796.35045 [14] B. Guan and J. Spruck, Boundary-value problems on (S^n) for surfaces of constant Gauss curvature , Ann. of Math. (2) 138 (1993), 601–624. JSTOR: · Zbl 0840.53046 [15] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. I , London Math. Soc. Monogr. 9 , Academic Press, London, 1976. · Zbl 0419.31001 [16] L. I. Hedberg and Th. H. Wolff, Thin sets in nonlinear potential theory , Ann. Inst. Fourier (Grenoble) 33 (1983), 161–187. · Zbl 0508.31008 [17] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations , Oxford Math. Monogr., Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. · Zbl 0780.31001 [18] L. Hörmander, Notions of Convexity , Progr. Math. 127 , Birkhäuser, Boston, 1994. [19] N. M. Ivochkina, Description of cones of stability generated by differential operators of Monge-Ampère type (in Russian), Mat. Sb. (N.S.) 122 ( 164 ), no. 2 (1983), 265–275.; English translation in Math. USSR-Sb. 50 , no. 1 (1985), 259–268. [20] –. –. –. –., Solution of the Dirichlet problem for certain equations of Monge-Ampère type (in Russian), Mat. Sb. (N.S.) 128 ( 170 ), no. 3 (1985), 403–415., 447; English translation in Math. USSR-Sb. 56 , no. 2 (1987), 403–415. · Zbl 0609.35042 [21] T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations , Acta Math. 172 (1994), 137–161. · Zbl 0820.35063 [22] M. Klimek, Pluripotential Theory , London Math. Soc. Monogr. (N.S.) 6 , Oxford Sci. Publ., Oxford Univ. Press, New York, 1991. · Zbl 0742.31001 [23] N. V. Krylov, Lectures on fully nonlinear elliptic equations , Rudolph Lipschitz Lectures, Univ. of Bonn, Germany, 1993. · Zbl 0816.35038 [24] D. A. Labutin, Pluripolarity of sets with small Hausdorff measure , Manuscripta Math. 102 (2000), 163–167. · Zbl 0964.32030 [25] ——–, Isolated singularities of solutions of fully nonlinear elliptic equations , to appear in J. Differential Equations. [26] N. S. Landkof, Foundations of Modern Potential Theory , Grundlehren Math. Wiss. 180 , Springer, New York, 1972. · Zbl 0253.31001 [27] P. Lindqvist and O. Martio, Two theorems of N. Wiener for solutions of quasilinear elliptic equations , Acta Math. 155 (1985), 153–171. · Zbl 0607.35042 [28] J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations , Math. Surveys Monogr. 51 , Amer. Math. Soc., Providence, 1997. · Zbl 0882.35001 [29] V. G. Maz’ya, The continuity at a boundary point of the solutions of quasi-linear elliptic equations (in Russian), Vestnik Leningrad. Univ. 25 , no. 13 (1970), 42–55.; English translation in Vestnik Leningrad. Univ. Math. 3 (1976), 225–242. · Zbl 0252.35024 [30] –. –. –. –., “Unsolved problems connected with the Wiener criterion” in The Legacy of Norbert Wiener: A Centennial Symposium (Cambridge, Mass., 1994) , Proc. Sympos. Pure Math. 60 , Amer. Math. Soc., Providence, 1997, 199–208. · Zbl 0883.35050 [31] V. G. Maz’ya and V. P. Havin, A nonlinear potential theory (in Russian), Uspekhi Mat. Nauk 27 , no. 6 (1972), 67–138.; English translation in Russian Math. Surveys 27 , no. 6 (1972), 71–148. [32] J. Serrin, Isolated singularities of solutions of quasi-linear equations , Acta Math. 113 (1965), 219–240. · Zbl 0173.39202 [33] N. S. Trudinger, “A priori bounds for graphs with prescribed curvature” in Analysis, et cetera: Research Papers Published in Honor of Jürgen Moser’s 60th Birthday , Academic Press, Boston, 1990, 667–676. · Zbl 0714.53008 [34] –. –. –. –., The Dirichlet problem for the prescribed curvature equations , Arch. Rational Mech. Anal. 111 (1990), 153–179. · Zbl 0721.35018 [35] –. –. –. –., Isoperimetric inequalities for quermassintegrals , Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 411–425. [36] –. –. –. –., On the Dirichlet problem for Hessian equations , Acta Math. 175 (1995), 151–164. · Zbl 0887.35061 [37] –. –. –. –., On new isoperimetric inequalities and symmetrization , J. Reine Angew. Math. 488 (1997), 203–220. · Zbl 0883.52006 [38] –. –. –. –., Weak solutions of Hessian equations , Comm. Partial Differential Equations 22 (1997), 1251–1261. · Zbl 0883.35035 [39] N. S. Trudinger and X.-J. Wang, Hessian measures, I , Topol. Methods Nonlinear Anal. 10 (1997), 225–239. · Zbl 0915.35039 [40] –. –. –. –., Hessian measures, II , Ann. of Math. (2) 150 (1999), 579–604. JSTOR: · Zbl 0947.35055 [41] ——–, Hessian measures, III , preprint, 2000, Australian National University mathematics research report no. MRR00-016, [42] J. I. E. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations , Indiana Univ. Math. J. 39 (1990), 355–382. · Zbl 0724.35028 [43] J. Väisälä, Capacity and measure , Michigan Math. J. 22 (1975), 1–3. · Zbl 0296.31006 [44] X. J. Wang, A class of fully nonlinear elliptic equations and related functionals , Indiana Univ. Math. J. 43 (1994), 25–54. · Zbl 0805.35036 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.