Ernst, Michael D. Permutation methods: a basis for exact inference. (English) Zbl 1100.62563 Stat. Sci. 19, No. 4, 676-685 (2004). Summary: The use of permutation methods for exact inference dates back to Fisher in 1935. Since then, the practicality of such methods has increased steadily with computing power. They can now easily be employed in many situations without concern for computing difficulties. We discuss the reasoning behind these methods and describe situations when they are exact and distribution-free. We illustrate their use in several examples. Cited in 30 Documents MSC: 62G10 Nonparametric hypothesis testing Keywords:Distribution-free; Monte Carlo; nonparametric; permutation tests; randomization tests Software:StatXact; R × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Bradley, J. V. (1968). Distribution-Free Statistical Tests . Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0202.17002 [2] Cytel Software Corporation (2003). StatXact 6 . Cytel Software Corporation, Cambridge, MA. [3] Dwass, M. (1957). Modified randomization tests for nonparametric hypotheses. Ann. Math. Statist. 28 181–187. · Zbl 0088.35301 · doi:10.1214/aoms/1177707045 [4] Edgington, E. S. (1995). Randomization Tests , 3rd ed. Dekker, New York. · Zbl 0893.62036 [5] Ernst, M. D. and Schucany, W. R. (1999). A class of permutation tests of bivariate interchangeability. J. Amer. Statist. Assoc. 94 273–284. JSTOR: · Zbl 1072.62573 · doi:10.2307/2669702 [6] Fisher, R. A. (1935). The Design of Experiments . Oliver and Boyd, Edinburgh. · Zbl 0011.03205 [7] Fisher, R. A. (1936). “The coefficient of racial likeness” and the future of craniometry. J. Royal Anthropological Institute of Great Britain and Ireland 66 57–63. [8] Garthwaite, P. H. (1996). Confidence intervals from randomization tests. Biometrics 52 1387–1393. · Zbl 0925.62122 · doi:10.2307/2532852 [9] Grogan, W. L., Jr. and Wirth, W. W. (1981). A new American genus of predaceous midges related to Palpomyia and Bezzia (Diptera: Ceratopogonidae). Proc. Biological Society of Washington 94 1279–1305. [10] Higgins, J. J. (2004). An Introduction to Modern Nonparametric Statistics . Brooks/Cole, Pacific Grove, CA. [11] Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. J. Comput. Graph. Statist. 5 299–314. [12] Jöckel, K.-H. (1986). Finite sample properties and asymptotic efficiency of Monte Carlo tests. Ann. Statist. 14 336–347. JSTOR: · Zbl 0589.62015 · doi:10.1214/aos/1176349860 [13] Kennedy, P. E. and Cade, B. S. (1996). Randomization tests for multiple regression. Comm. Statist. Simulation Comput. 25 923–936. · Zbl 0875.62172 · doi:10.1080/03610919608813350 [14] Lehmann, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks . Holden–Day, San Francisco. · Zbl 0354.62038 [15] Manly, B. F. J. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology , 2nd ed. Chapman and Hall, London. · Zbl 0918.62081 [16] Pitman, E. J. G. (1937a). Significance tests which may be applied to samples from any populations. J. Roy. Statist. Soc. Suppl. 4 119–130. · Zbl 0019.03502 [17] Pitman, E. J. G. (1937b). Significance tests which may be applied to samples from any populations. II. The correlation coefficient test. J. Roy. Statist. Soc. Suppl. 4 225–232. · Zbl 0019.03503 [18] Pitman, E. J. G. (1938). Significance tests which may be applied to samples from any populations. III. The analysis of variance test. Biometrika 29 322–335. · Zbl 0018.22601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.