zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems. (English) Zbl 1100.65066
The paper represents a continuation of the previous work of {\it P. M. Lima, N. V. Chemetov, N. B. Konyukhova}, and {\it A. I. Sukov} [Analytical-numerical approach to a singular boundary value problem, Proceedings of CILAMCE XXIV, Ouro Preto, Brasil, (2003), ISBN 85-288-0040-7]. A sophisticated analysis shall improve the construction of numerical methods tailored to the considered problem. The underlying physical problem means the determination of the density in non-homogeneous fluids. Simplifying assumptions on corresponding partial differential equations yield a time-independent problem in one or more space dimensions. In the paper at hand, bubble-type solutions shall be determined, where according spatial symmetries arise. Consequently, the solution depends only on the radial variable $r$ in the polar system. Thus a scalar ordinary differential equation (ODE) of second order arises for the unknown density function. Since bubble-type functions are considered, the solution shall increase monotonically. The physical problem causes boundary conditions for $r=0$ and $r \rightarrow \infty$. Thereby, a parameter $\xi$ has to be chosen appropriately in the right-hand boundary condition. However, the ODE exhibits a singularity in each of the two cases. The authors analyse the two boundary conditions separately. In both cases, a one-parameter family of solutions arises, which satisfies one of the boundary constraints but not the other condition. Furthermore, the solution can be expanded in a Taylor series at $r=0$ and in an exponential Lyapunov series for $r \rightarrow \infty$. The authors prove that $0 < \xi < 1$ represents a necessary condition for the existence of non-constant solutions satisfying the boundary value problem. From previous results, it follows that this condition is sufficient, too. Using the analytical properties, the authors construct a numerical method for solving the boundary value problem of the ODE. The idea consists in splitting the domain $[0,\infty)$ into three parts. In the two outer parts, the respective expansions of the solution into series are applied. In addition, the middle part is divided at a unique zero of the solution again, where a shooting method yields a corresponding approximation. Numerical simulations of the boundary value problem demonstrate that the constructed technique produces results, which agree with the expectations according to the underlying physical problem with bubble-type solutions. The paper is carefully written and well comprehensible.

MSC:
65L10Boundary value problems for ODE (numerical methods)
34B16Singular nonlinear boundary value problems for ODE
Software:
Mathematica
WorldCat.org
Full Text: DOI
References:
[1] Abramowitz, M.; Stegun, I.: Handbook of mathematical functions. (1965) · Zbl 0171.38503
[2] Baxley, J. V.: Boundary value problems on infinite intervals. Boundary value problems for functional differential equations, 49-62 (1995) · Zbl 0845.34032
[3] Berestycki, H.; Lions, P. -L.: Nonlinear scalar field equations, I, existence of a ground state. Arch. rational mech. Anal. 82, 313-345 (1983) · Zbl 0533.35029
[4] Dell’isola, F.; Gouin, H.; Rotoli, G.: Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations. European J. Mech. B/fluids 15, 545-568 (1996) · Zbl 0887.76008
[5] Derrick, G. H.: Comments on nonlinear wave equations as models for elementary particles. J. math. Phys. 5, 1252-1254 (1965)
[6] Gavrilyuk, S. L.; Shugrin, S. M.: Media with equations of state that depend on derivatives. J. appl. Mech. tech. Phys. 37, 177-189 (1996) · Zbl 1031.76501
[7] Gazzola, F.; Serrin, J.; Tang, M.: Existence of ground states and free boundary problems for quasilinear elliptic operators. Add. differential equations 5, 1-30 (2000) · Zbl 0987.35064
[8] Gouin, H.; Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for van der Waals fluids. Mech. res. Comm. 24, 255-260 (1997) · Zbl 0899.76064
[9] Konyukhova, N. B.: Singular Cauchy problems for systems of ordinary differential equations. USSR comput. Math. math. Phys. 23, 72-82 (1983) · Zbl 0555.34002
[10] P.M. Lima, N.V. Chemetov, N.B. Konyukhova, A.I. Sukov, Analytical -- numerical approach to a singular boundary value problem, in: Proceedings of CILAMCE XXIV, Ouro Preto, Brasil (CD-ROM).
[11] A.M. Lyapunov, Problème Général de la Stabilité du Mouvement, Annals of Mathematics Studies, vol. 17, Princeton University Press, Princeton, NJ, 1947.
[12] Rubakov, V. A.: Classical gauge fields. (1999) · Zbl 1036.81002
[13] Rybakov, Yu.P.; Sanyuk, V. I.: Many-dimensional solitons. (2001)
[14] Wasov, W.: Asymptotic expansions for ordinary differential equations. (1965)
[15] Wolfram, S.: The Mathematica book. (1996) · Zbl 0878.65001