Gabdulkhaev, B. G. Solution methods for bisingular integral equations with internal coefficients. (English. Russian original) Zbl 1100.65124 Russ. Math. 48, No. 8, 9-23 (2004); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2004, No. 8, 11-25 (2004). From the introduction: The theory of equations of the form \[ a_0(s,\sigma) \varphi(s,\sigma)+\frac{1}{2\pi}\int_0^{2\pi}a_1(s, \sigma;\xi)\text{ctg}\frac {\xi-s}{2}\varphi(\xi,\sigma)d\xi+ \] \[ + \frac{1}{2\pi}\int_0^{2\pi}a_2(s,\sigma; \eta)\text{ctg}\frac{\eta-\sigma}{2}\varphi(s,\eta)d\eta+\tag{1} \] \[ +\frac{1} {4\pi^2} \int_0^{2\pi}\int_0^{2\pi}a_{12}(s,\sigma;\xi,\eta)\text{ctg}\frac{\xi-s}{2}\text{ctg}\frac{\eta-\sigma}{2}\varphi(\xi,\eta)d\xi\,d\eta=f(s, \sigma),\;-\infty<s,\;\sigma<\infty, \] including approximative methods for their solution, is very complicated and is far from being completed. Below we formulate simple sufficient conditions of existence, uniqueness and stability of solutions of equation, and we propose practically efficient (including optimal) approximative solution methods. Cited in 1 ReviewCited in 1 Document MSC: 65R20 Numerical methods for integral equations 45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type) 45M10 Stability theory for integral equations Keywords:two-dimensional singular integral equations; projection method; convergence; error estimates; quadrature-cubature method; stability PDF BibTeX XML Cite \textit{B. G. Gabdulkhaev}, Russ. Math. 48, No. 8, 9--23 (2004; Zbl 1100.65124); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2004, No. 8, 11--25 (2004)