Friesecke, Gero; James, Richard D.; Müller, Stefan A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. (English) Zbl 1100.74039 Arch. Ration. Mech. Anal. 180, No. 2, 183-236 (2006). The authors use the \(\Gamma\)-convergence method for deriving of a hierarchy of plate models from three-dimensional nonlinear elasticity formulation. In this way, they analyze the membrane theory, von Kármán theory and certain theories of constraints. Different limit models are obtained using different scalings of elastic energy per unit volume and of the strenght of applied force with respect to the thickness of the plate. In the conclusion, the authors summarize the obtained results and, in the case of von Kármán theory, explain how the criticism of Truesdell and Antman can be addressed by means of authors’ method. Finally, important open problems are formulated which cannot be approached by means of the \(\Gamma\)-convergence. Reviewer: Oldřich John (Praha) Cited in 6 ReviewsCited in 228 Documents MSC: 74K20 Plates 74B20 Nonlinear elasticity 74Q05 Homogenization in equilibrium problems of solid mechanics 35B27 Homogenization in context of PDEs; PDEs in media with periodic structure Keywords:membrane theory; von Kármán theory × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Acerbi, J. Elasticity, 25, 137 (1991) · Zbl 0734.73094 [2] Antman, S.S.: Nonlinear problems of elasticity. Springer, New York, 1995 · Zbl 0820.73002 [3] Anzelotti, Asymptotic Anal., 9, 61 (1994) · Zbl 0811.49020 [4] Audoly, Phys. Rev. Lett., 91, 086105 (2003) · doi:10.1103/PhysRevLett.91.086105 [5] Amar, Proc. Royal Soc. Lond. A, 453, 729 (1997) · Zbl 0894.73049 · doi:10.1098/rspa.1997.0041 [6] Belgacem, (French) [A Γ-convergence method for a nonlinear membrane model] C. R. Acad. Sci. Paris Sér. I, 324, 845 (1997) · Zbl 0878.73005 [7] Belgacem, J. Nonlinear Sci., 10, 661 (2000) · Zbl 1015.74029 · doi:10.1007/s003320010007 [8] Belgacem, Arch. Ration. Mech. Anal., 164, 1 (2002) · Zbl 1041.74048 · doi:10.1007/s002050200206 [9] Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis Vol. I. American Math. Soc., 2000 · Zbl 0946.46002 [10] Bhattacharya, J. Mech. Phys. Solids, 47, 531 (1999) · Zbl 0960.74046 · doi:10.1016/S0022-5096(98)00043-X [11] Braides, A., Truskinosky, L.: In preparation [12] Casarino, J. Convex Anal., 3, 221 (1996) · Zbl 0870.73030 [13] Cerda, Nature, 401, 46 (1999) · doi:10.1038/43395 [14] Chaudhuri, Calc. Var., 19, 379 (2004) · Zbl 1086.49010 · doi:10.1007/s00526-003-0220-2 [15] Chaudhuri, N., Müller, S.: Scaling of the energy for thin martensitic films. Preprint MPI-MIS 59/2004 · Zbl 1108.74039 [16] Ciarlet, Arch. Ration. Mech. Anal., 73, 349 (1980) · Zbl 0443.73034 · doi:10.1007/BF00247674 [17] Ciarlet, P.G.: Mathematical elasticity II - theory of plates. Elsevier, Amsterdam, 1997 · Zbl 0888.73001 [18] Conti, S.: Low energy deformations of thin elastic plates: isometric embeddings and branching patterns. Habilitation thesis, the University of Leipzig, 2003 · Zbl 1137.74004 [19] Conti, S., Maggi, F.: In preparation [20] Conti, S., Maggi, F., Müller, S.: Preprint MPI-MI 54/2005 [21] Dal Maso, G.: An introduction to Γ-convergence. Birkhäuser, 1993 · Zbl 0816.49001 [22] DeGiorgi, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58, 842 (1975) · Zbl 0339.49005 [23] DiDonna, Phys. Rev. E, 65, 016603 (2002) · doi:10.1103/PhysRevE.65.016603 [24] Dolzmann, Arch. Ration. Mech. Anal., 132, 101 (1995) · Zbl 0846.73054 · doi:10.1007/BF00380505 [25] Föppl, A.: Vorlesungen über technische Mechanik5. Leipzig, pp. 132-139, 1907 · JFM 38.0691.01 [26] Fonseca, I., Gangbo, W.: Degree theory in analysis and applications. Oxford Univ. Press, 1995 · Zbl 0852.47030 [27] Fox, Arch. Ration. Mech. Anal., 124, 157 (1993) · Zbl 0789.73039 · doi:10.1007/BF00375134 [28] Friesecke, C. R. Acad. Sci. Paris. Sér. I, 334, 173 (2002) · Zbl 1012.74043 [29] Friesecke, Pure Appl. Math., 55, 1461 (2002) · Zbl 1021.74024 · doi:10.1002/cpa.10048 [30] Friesecke, C. R. Acad. Sci. Paris. Sér. I, 335, 201 (2002) · Zbl 1041.74043 [31] Friesecke, C. R. Acad. Sci. Paris. Sér. I, 336, 697 (2003) · Zbl 1140.74481 [32] Friesecke, G., James, R.D., Müller, S.: Rigidity of maps close to SO(n) and equiintegrability. In preparation [33] Friesecke, G., James, R.D., Müller, S.: Stability of slender bodies under compression and validity of the von Kármán theory. In preparation. · Zbl 1200.74060 [34] Geymonat, Math. Methods Appl. Sci., 8, 206 (1986) · Zbl 0616.73010 [35] Gioia, Adv. Appl. Mech., 33, 119 (1997) · Zbl 0930.74024 · doi:10.1016/S0065-2156(08)70386-7 [36] Hartmann, Amer. J. Math., 81, 901 (1959) · Zbl 0094.16303 [37] Iwaniec, Proc. Amer. Math. Soc., 118, 181 (1993) · Zbl 0784.30015 · doi:10.2307/2160025 [38] Jin, J. Math. Phys., 42, 192 (2001) · Zbl 1028.74036 · doi:10.1063/1.1316058 [39] John, Comm. Pure Appl. Math., 14, 391 (1961) · Zbl 0102.17404 [40] John, F.: Bounds for deformations in terms of average strains. In: Inequalities III O. Shisha (ed.), pp. 129-144, 1972 · Zbl 0292.53003 [41] Kirchheim, B.: Geometry and rigidity of microstructures. Habilitation thesis, University of Leipzig, 2001 (see also: MPI-MIS Lecture Notes. 16/ 2003 http://www.mis.mpg.de/preprints/ln/index.html) · Zbl 1140.74303 [42] Kirchhoff, J. Reine Angew. Math., 40, 51 (1850) · ERAM 040.1086cj [43] von Kármán, T.: Festigkeitsprobleme im Maschinenbau in Encyclopädie der Mathematischen Wissenschaften vol. IV/4, Leipzig, 1910, pp. 311-385 [44] Dret, C.R. Acad. Sci. Paris Sér. I, 337, 143 (2003) · Zbl 1084.74038 [45] Dret, C. R. Acad. Sci. Paris Sér. I, 317, 221 (1993) · Zbl 0781.73037 [46] Dret, J. Math. Pures Appl., 73, 549 (1995) [47] Dret, J. Nonlinear Sci., 6, 59 (1996) · Zbl 0844.73045 · doi:10.1007/s003329900003 [48] Liu, Indiana U. Math. J., 26, 645 (1977) · Zbl 0368.46036 · doi:10.1512/iumj.1977.26.26051 [49] Lobkovsky, Phys. Rev. E, 53, 3750 (1996) · doi:10.1103/PhysRevE.53.3750 [50] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4^th Edition. Cambridge University Press, Cambridge, 1927 · JFM 53.0752.01 [51] Marigo, C. R. Acad. Sci. Paris Sér. IIb, 326, 79 (1998) · Zbl 0924.73109 [52] Morgenstern, Arch. Ration. Mech. Anal., 4, 145 (1959) · Zbl 0126.20605 [53] Morrey, C.B.: Multiple integrals in the calculus of variations. Springer, 1966 · Zbl 0142.38701 [54] Monneau, Arch. Ration. Mech. Anal., 169, 1 (2003) · Zbl 1030.74030 · doi:10.1007/s00205-003-0267-4 [55] Mora, Calc. Var. Parial Differential Equations, 18, 287 (2003) · Zbl 1053.74027 · doi:10.1007/s00526-003-0204-2 [56] Mora, Ann. Inst. H. Poincaré Analyse non linéaire, 21, 271 (2004) · Zbl 1109.74028 · doi:10.1016/S0294-1449(03)00044-1 [57] Mora, M.G., Müller, S.: Derivation of a rod theory for phase-transforming materials. Preprint MPI-MIS 40/2005 [58] Müller, S., Pakzad, M.R.: Regularity properties of isometric immersions. Preprint MPI-MIS 4/ 2004. To appear in Math. Z. · Zbl 1082.58010 [59] Pakzad, J. Differential Geom., 66, 47 (2004) · Zbl 1064.58009 [60] Pantz, C. R. Acad. Sci. Paris Sér. I, 332, 587 (2001) · Zbl 1033.74028 [61] Pantz, Arch. Ration. Mech. Anal., 167, 179 (2003) · Zbl 1030.74031 · doi:10.1007/s00205-002-0238-1 [62] Pantz, O.: Personal communication [63] Pipkin, IMA J. Appl. Math., 36, 85 (1986) · Zbl 0644.73047 [64] Pipkin, Arch. Ration. Mech. Anal., 95, 93 (1986) · Zbl 0622.73045 [65] Pogorelov, A.V.: Surfaces with bounded extrinsic curvature (Russian). Kharhov, 1956 [66] Pogorelov, A.V.: Extrinsic geometry of convex surfaces. In : Translation of mathematical monographsvol. 35. American Math. Soc., 1973 [67] Raoult, A.: Personal communication [68] Reissner, E.: On tension field theory. Proc. 5th Internat. Congr. Appl. Mech., 88-92 (1938) (reprinted in [69]) · JFM 65.1466.01 [69] Reissner, E.: Selected works in applied mechanics and mathematics. Jones and Bartlett Publ., London, pp. 134-146, 1996 · Zbl 0846.01023 [70] Reshetnyak, Siberian Math. J., 8, 69 (1967) · Zbl 0172.37801 · doi:10.1007/BF01040573 [71] Sharon, Nature, 419, 579 (2002) · doi:10.1038/419579a [72] Shu, Arch. Ration. Mech. Anal., 153, 39 (2000) · Zbl 0959.74043 · doi:10.1007/s002050000088 [73] Šverák, Arch. Ration. Mech. Anal., 100, 105 (1988) · Zbl 0659.73038 · doi:10.1007/BF00282200 [74] Truesdell, C.: Comments on rational continuum mechanics, Three lectures for the international Symposium on Continuum Mechanics and Partial Differential Equations, Instituto de Matemática, University Federal do Rio de Janeiro, August 1-5, 1977, pp. 495-603 of Contemporary developments in continuum mechanics and partial differential equations ed. G.M. LaPenha and L.E. Medeiros, North-Holland, Amsterdam, 1978 [75] Venkataramani, Nonlinearity, 17, 301 (2004) · Zbl 1058.74038 · doi:10.1088/0951-7715/17/1/017 [76] Villaggio, P.: Mathematical models for elastic structures. Cambridge Univ. Press, 1997 · Zbl 0978.74002 [77] Vodopyanov, Siberian Math. J., 17, 399 (1976) · Zbl 0353.30019 · doi:10.1007/BF00967859 [78] Wagner, Z. Flugtechnik u. Motorluftschiffahrt, 20, 200 (1929) [79] Ziemer, W.: Weakly Differentiable Functions. Springer-Verlag, New York, 1989 · Zbl 0692.46022 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.