zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent robust stability and stabilization for discrete-time switched systems with mode-dependent time-varying delays. (English) Zbl 1100.93034
Summary: We consider the problems of robust stability and stabilization via memoryless state feedback for uncertain discrete-time switched systems with mode-dependent time-varying delays. By using a descriptor system method and linear matrix inequality technique, and by introducing a switched Lyapunov functional, we establish some new delay-dependent stability and stabilization criteria for the system. Numerical examples are presented to illustrate the effectiveness of the theoretical results.

93D09Robust stability of control systems
93C55Discrete-time control systems
93D10Popov-type stability of feedback systems
LMI toolbox
Full Text: DOI
[1] Branicky, M. S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE trans. Automat. control 43, 475-482 (1998) · Zbl 0904.93036
[2] Boyd, S.; Elghaoui, L.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. (1994) · Zbl 0816.93004
[3] Dayawansa, W. P.; Martin, C. F.: A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE trans. Automat. control 44, 751-760 (1999) · Zbl 0960.93046
[4] Daafouz, J.; Riedinger, P.; Lung, C.: Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE trans. Automat. control 47, 1883-1887 (2002)
[5] Fridman, E.: New Lyapunov-Krasovskiń≠ functionals for stability of linear retard and neutral type systems. Syst. control lett. 43, 309-319 (2001) · Zbl 0974.93028
[6] Fridman, E.; Shaked, U.: A descriptor system approach to H$\infty $control of linear time-delay systems. IEEE trans. Automat. control 47, 253-270 (2002) · Zbl 1006.93021
[7] E. Feron, Quadratic stabilizability of switched systems via state and output feedback, Center for Intelligent Control Systems, Massachusetts Institute of Technology, Cambridge, MA, Tech. Rep. CICS P-468, Feb, 1996.
[8] Gahinet, P.; Nemirovski, V.; Laub, A. J.; Chilali, M.: LMI control toolbox for use with Matlab. (1995)
[9] Li, X.; Fridman, E.; Shaked, U.: Robust H$\infty $control of distributed delay systems with application to combustion control. IEEE trans. Automat. control 46, 1930-1935 (2001) · Zbl 1017.93038
[10] Li, Z. G.; Wen, C. Y.; Soh, Y. C.: Stabilization of a class of switched systems via designing switching laws. IEEE trans. Automat. control 46, 665-670 (2001) · Zbl 1001.93065
[11] Li, Z. G.; Wen, C. Y.; Soh, Y. C.: Observer-based stabilization of switching linear systems. Automatica 39, 517-524 (2003) · Zbl 1013.93045
[12] Liberzon, D.; Hespanha, J. P.; Morse, A. S.: Stability of switched systems: a Lie-algebraic condition. Syst. control lett. 37, 117-122 (1999) · Zbl 0948.93048
[13] Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems. IEEE control syst. Mag. 19, 59-70 (1999)
[14] Morse, A. S.: Control using logic-based switching. (1997) · Zbl 0864.00080
[15] Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems. Int. J. Control 74, 1447-1455 (2001) · Zbl 1023.93055
[16] Park, P.: A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE trans. Automat. control 44, 876-877 (1999) · Zbl 0957.34069
[17] M.A. Wicks, P. Peleties, R.A. DeCarlo, Construction of piecewise Lyapunov functions for stabilizaing switched systems, in: Proc. IEEE Conf. on Decision and Control, Lake Buena Vista, December 1994, pp. 3492-3497.
[18] Wicks, M. A.; Peleties, P.; Decarlo, R. A.: Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems. Eur. J. Control 4, 140-147 (1998) · Zbl 0910.93062
[19] Wang, Y.; Xie, L.; De Souza, C. E.: Robust control of a class of uncertain nonlinear systems. Syst. control lett. 19, 139-149 (1972) · Zbl 0765.93015
[20] Xie, D.; Wang, L.; Hao, F.; Xie, G.: LMI approach to L2 gain analysis and control synthesis of uncertain switched systems. IEE proc. Control theory appl. 151, 21-28 (2004)
[21] G. Zhai, Quadratic stability of discrete-time switched systems via state and output feedback, in: Proc. IEEE Conf. on Decision and Control, Orlando, FL, December 2001, pp. 2165-2166.
[22] Zhai, G.; Hu, B.; Yasuda, K.; Michei, A. N.: Stability and L2 gain analysis of discrete-time switched systems. Trans. inst. Syst., control inform. Eng. 15, 117-125 (2002)