Chiang-Hsieh, Hung-Jen; Lipman, Joseph A numerical criterion for simultaneous normalization. (English) Zbl 1101.14004 Duke Math. J. 133, No. 2, 347-390 (2006). Let \(f:X\to Y\) be a scheme map, flat with all fibres geometrically reduced. A simultaneous normalization of \(f\) is a finite map \(v:Z\to X\) such that \(\bar{f}:=f\circ v\) is flat with all fibres geometrically normal and such that for each \(y\in f(X)\) the induced map of fibres \(v_y:\bar{f}^{-1}(y)\to f^{-1} (y)\) is a normalization map.The main result is that a flat family \(f:X\to Y\) of reduced equidimensional projective \(\mathbb C\)-varieties with normal parameter space admits a simultaneous normalization if and only if the Hilbert polynomial of the integral closure \(\overline{\mathcal O}_{f^{-1}(y)}\) is locally independent of \(y\). In case the fibres are curves projectivity is not needed and the statement reduces to the \(\delta\)-constant criterion of Teissier. Reviewer: Gerhard Pfister (Kaiserslautern) Cited in 10 Documents MSC: 14B05 Singularities in algebraic geometry 32S15 Equisingularity (topological and analytic) Keywords:simultaneous normalization; families of schemes PDF BibTeX XML Cite \textit{H.-J. Chiang-Hsieh} and \textit{J. Lipman}, Duke Math. J. 133, No. 2, 347--390 (2006; Zbl 1101.14004) Full Text: DOI arXiv Euclid OpenURL References: [1] C.,BĂNică and O.,StĂNăşIlă, Algebraic Methods in the Global Theory of Complex Spaces , Wiley, London, 1976. · Zbl 0334.32001 [2] R., Berger, R.,Kiehl, E.,Kunz, and H.-J.,Nastold, Differentialrechnung in der analytischen Geometrie , Lecture Notes in Math. 38 , Springer, Berlin, 1967. · Zbl 0163.03202 [3] J., Bingener, Holomorph-prävollständige Resträume zu analytischen Mengen in Steinschen Räumen , J. Reine Angew. Math. 285 (1976), 149–171. · Zbl 0326.32012 [4] -, Schemata über Steinschen Algebren, Schr. Math. Inst. Univ. Münster (2) 10 , Math. Inst. Univ. Münster, Münster, 1976. · Zbl 0348.32003 [5] N., Bourbaki, Éléments de mathématique, fasc. 28: Algèbre commutative, chapitre 3: Graduations, filtrations et topologies, Actualités Sci. Indust. 1293 , Hermann, Paris, 1961. [6] A.,Brezuleanu and C., Rotthaus, Eine Bemerkung über Ringe mit geometrisch normalen formalen Fasern, Arch. Math. (Basel) 39 (1982), 19–27. · Zbl 0526.13006 [7] J.,BriançOn, A.,Galligo, and M.,Granger, Déformations équisingulières des germes de courbes gauches réduites , Mém. Soc. Math. France (N.S.) 1980 /81, no. 1. · Zbl 0447.14004 [8] C.,BrüCker and G.-M.,Greuel, Deformationen isolierter Kurvensingularitäten mit eingebetteten Komponenten , Manuscripta Math. 70 (1990), 93–114. · Zbl 0728.32016 [9] SéMinaire Henri Cartan, 13ième année: 1960/61. Familles d’espaces complexes et fondements de la géométrie analytique. Fasc. 1 et 2: Exp. 1–21. 2ième édition, corrigée. École Normale Supérieure, Secrétariat mathématique, Paris, 1962. [10] G.,Fischer, Complex Analytic Geometry , Lecture Notes in Math. 538 , Springer, Berlin, 1976. · Zbl 0343.32002 [11] J.,Frisch, Points de platitude d’un morphisme d’espaces analytiques complexes , Invent. Math. 4 (1967), 118–138. · Zbl 0167.06803 [12] H.,Grauert and R.,Remmert, Coherent Analytic Sheaves , Grundlehren Math. Wiss. 265 , Springer, Berlin, 1984. [13] A.,Grothendieck, “Techniques de construction et théorèmes d’existence en géométrie algébrique, IV: Les schémas de Hilbert” in Séminaire Bourbaki, Vol. 6 , Année 1960/61, Soc. Math. France, Montrouge, 1995, 249–276., exp. no. 221. · Zbl 0236.14003 [14] A.,Grothendieck and J.,Dieudonné, Éléments de Géométrie Algébrique, I: Le language des schémas , Grundlehren Math. Wiss. 166 , Springer, Berlin, 1971. · Zbl 0203.23301 [15] -, Éléments de Géométrie Algébrique, II: Étude globale élémentaire de quelques classes de morphismes , Inst. Hautes Études Sci. Publ. Math. 8 (1961). [16] -, Éléments de Géométrie Algébrique, III: Étude cohomologique des fasceaux cohérents, I , Inst. Hautes Études Sci. Publ. Math. 11 (1961); II, 17 (1963). ; Mathematical Reviews (MathSciNet): · Zbl 0122.16102 [17] -, Éléments de Géométrie Algébrique, IV: Étude local des schémas et des morphismes de schémas, II , Inst. Hautes Études Sci. Publ. Math. 24 (1965); II, 28 (1966), IV, 32 (1967). ; ; Mathematical Reviews (MathSciNet): Mathematical Reviews (MathSciNet): MR0238860 [18] A. Grothendieck and H.,Seydi, Platitude d’une adhérence schématique et lemme de Hironaka généralisé , Manuscripta Math. 5 (1971), 323–339. · Zbl 0223.14010 [19] R.,Kiehl, Ausgezeichnete Ringe in der nichtarchimedischen analytischen Geometrie , J. Reine Angew. Math. 234 (1969), 89–98. · Zbl 0169.36501 [20] E.,Kunz, On Noetherian rings of characteristic \(p\) , Amer. J. Math. 98 (1976), 999–1013. JSTOR: · Zbl 0341.13009 [21] J.,Lipman, Free derivation modules on algebraic varieties , Amer. J. Math. 87 (1965), 874–898. JSTOR: · Zbl 0146.17301 [22] M.,Manaresi, Sard and Bertini type theorems for complex spaces , Ann. Mat. Pura Appl. (4) 131 (1982), 265–279. · Zbl 0498.32013 [23] J.,Marot, Sur les anneaux universellement japonais, Bull.,Soc.,Math.,France 103 (1975), 103–111. · Zbl 0305.13007 [24] H.,Matsumura, Commutative Algebra, 2nd ed., Math. Lecture Note Ser. 56 , Benjamin/Cummings, Reading, Mass., 1980. · Zbl 0441.13001 [25] -, Commutative Ring Theory , Cambridge Stud. Adv. Math. 8 , Cambridge Univ. Press, Cambridge, 1989. [26] M.,Nagata, Local Rings , Intersci. Tracts Pure Appl. Math. 13 , Wiley, New York, 1962. [27] J.,Nishimura, On ideal-adic completion of Noetherian rings , J. Math. Kyoto Univ. 21 (1981), 153–169. · Zbl 0464.13006 [28] L.,J.,Ratliff, On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals, I , Amer. J. Math. 91 (1969), 508–528. JSTOR: · Zbl 0182.06101 [29] -, On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals, II , Amer. J. Math. 92 (1970), 99–144. JSTOR: · Zbl 0198.06003 [30] -, Locally quasi-unmixed Noetherian rings and ideals of the principal class , Pacific J. Math. 52 (1974), 185–205. · Zbl 0285.13004 [31] MichèLe Raynaud, Revêtements étales et groupe fondamental , Séminaire de Géométrie Algébrique du Bois-Marie 1960–61 (SGA 1), Doc. Math. (Paris) 3 , Soc.,Math. France, Montrouge, 2003. [32] B.,Teissier, “The hunting of invariants in the geometry of discriminants” in Real and Complex Singularities (Oslo, 1976) , Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands, 1977, 565–678. [33] -, “Resolution simultanée, I, II” in Séminaire sur les Singularités des Surfaces (Palaiseau, France, 1976–1977.) , Lecture Notes in Math. 777 , Springer, Berlin, 1980, 71–146. [34] B. Teissier and M. Lejeune-Jalabert, Contribution à l’étude des singularités du point de vue du polygone de Newton, Thèse d’État, Université de Paris VII, Paris, 1973. [35] J. M. Wahl, Equisingular deformations of normal surface singularities, I , Ann. of Math. (2) 104 (1976), 325–356. JSTOR: · Zbl 0358.14007 [36] O.,Zariski, Studies in equisingularity, I: Equivalent singularities of plane algebroid curves , Amer. J. Math. 87 (1965), 507–536. JSTOR: · Zbl 0132.41601 [37] -, Studies in equisingularity, III: Saturation of local rings and equisingularity , Amer. J. Math. 90 (1968), 961–1023. JSTOR: · Zbl 0189.21405 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.