zbMATH — the first resource for mathematics

Congruence relations on some Shimura varieties. (English) Zbl 1101.14033
Summary: The main purpose of this paper is the generalization of the well-known Eichler-Shimura congruence relations for modular curves to Shimura varieties of PEL type whose Shimura group \(G\) is split over a fixed prime \(p\). In particular we prove a conjecture of Blasius and Rogawski for these Shimura varieties. Further we give a formula for the cycle which is the reduction to positive characteristic of the Hecke operator \(T_p\) in terms of the root data of \(G\) and calculate this cycle in two examples.

14G35 Modular and Shimura varieties
11G18 Arithmetic aspects of modular and Shimura varieties
Full Text: DOI
[1] [BR] D. Blasius, J. D. Rogawski, Zeta Functions of Shimura Varieties, in: Motives2, Proc. Symp. Pure Math. 55 (1994), 525-571. · Zbl 0827.11033
[2] Bo A., Proc. Symp. Pure Math. 33 pp 27– (1979)
[3] [Bou] N. Bourbaki, Groupes et AlgeAbres de Lie IV, V, VI, Herman, Paris1968.
[4] [BuE] O. BuEltel, On the mod-p reduction of ordinary CM-points, thesis, Oxford 1997.
[5] De P., Proc. Symp. Pure Math. 33 pp 247– (1979)
[6] Deligne D, IHES Publ. Math. 36 pp 75– (1969)
[7] Faltings C.-L, Folge pp 22– (1990)
[8] Ka N., Springer Lect. Notes Math. 868 pp 138– (1981)
[9] Ko R., Math. Ann. 269 pp 287– (1984)
[10] Ko R, J. AM 5 pp 373– (1992)
[11] Ko R, Comp. Math. 109 pp 255– (1997)
[12] Ko R., Duke Math. J. 51 (3) pp 611– (1984)
[13] La E, Springer Lect. Notes Math. pp 1619– (1996)
[14] [Ra] M. Rapoport, A positivity property of the Satake homomorphism, preprint, KoEln 1999.
[15] [RZ] M. Rapoport, T. Zink, PeriodSpaces for p-divisible Groups, Ann. Math. Stud. 141, Princeton University Press, Princeton 1996.
[16] Sa I, Inst. Hautes Etudes Sci. Publ. Math. 18 pp 1– (1963)
[17] St H, Forum Math. 9 pp 405– (1997)
[18] [We] T. Wedhorn, Ordinariness in good reductions of Shimura varieties of PEL-type, preprint, KoEln 1998, Ann. Sci. EAc. Norm. Sup., to appear. · Zbl 0906.14020
[19] [Zi] T. Zink, Cartier Theory and Crystalline DieudonneA Theory, preprint, Bielefeld1998.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.