zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Detection of symmetric homoclinic orbits to saddle-centres in reversible systems. (English) Zbl 1101.37017
Summary: We present a perturbation technique for the detection of symmetric homoclinic orbits to saddle-centre equilibria in reversible systems of ordinary differential equations. We assume that the unperturbed system has primary, symmetric homoclinic orbits, which may be either isolated or appear in a family, and use an idea similar to that of Melnikov’s method to detect homoclinic orbits in their neighbourhood. This technique also allows us to identify bifurcations of unperturbed or perturbed, symmetric homoclinic orbits. Our technique is of importance in applications such as nonlinear optics and water waves since homoclinic orbits to saddle-centre equilibria describe embedded solitons (ESs) in systems of partial differential equations representing physical models, and except for special cases their existence has been previously studied only numerically using shooting methods and continuation techniques. We apply the general theory to two examples, a four-dimensional system describing ESs in nonlinear optical media and a six-dimensional system which can possess a one-parameter family of symmetric homoclinic orbits in the unperturbed case. For these examples, the analysis is compared with numerical computations and an excellent agreement between both results is found.

37C10Vector fields, flows, ordinary differential equations
37C29Homoclinic and heteroclinic orbits
37C80Symmetries, equivariant dynamical systems
37G20Hyperbolic singular points with homoclinic trajectories
34C37Homoclinic and heteroclinic solutions of ODE
37K40Soliton theory, asymptotic behavior of solutions
Mathematica; AUTO
Full Text: DOI
[1] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. (1965) · Zbl 0171.38503
[2] Champneys, A. R.; Härterich, J.: Cascades of homoclinic orbits to a saddle-centre for reversible and perturbed Hamiltonian systems. Dyn. stab. Sys. 15, 231-252 (2000) · Zbl 1003.37033
[3] Champneys, A. R.; Malomed, B. A.: Embedded solitons in a three-wave system. Phys. rev. E 61, 463466 (1999)
[4] Champneys, A. R.; Malomed, B. A.; Yang, J.; Kaup, D. J.: Embedded solitons: solitary waves in resonance with the linear spectrum. Physica D 152, 340-354 (2001) · Zbl 0976.35087
[5] Coddington, E. A.; Levinson, N.: Theory of ordinary differential equations. (1955) · Zbl 0064.33002
[6] Devaney, R. L.: Reversible diffeomorphisms and flows. Trans. amer. Math. soc. 218, 89-113 (1976) · Zbl 0363.58003
[7] E. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X. Wang, AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), Concordia University, Montreal, 1997
[8] Delshams, A.; Lázaro, J. T.: Pseudo-normal form near saddle-center or saddle-focus equilibria. J. differential equations 208, No. 2, 312-343 (2005) · Zbl 1062.34041
[9] Erdélyi, A.: Higher transcendental functions. (1953) · Zbl 0051.30303
[10] Grotta-Ragazzo, C.: Nonintegrability of some Hamiltonian systems, scattering and analytic continuation. Comm. math. Phys. 166, 255-277 (1994) · Zbl 0814.70009
[11] Grotta-Ragazzo, C.: Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers. Comm. pure appl. Math. 50, 105-147 (1997) · Zbl 0884.58043
[12] Guckenheimer, J.; Holmes, P. J.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. (1983) · Zbl 0515.34001
[13] Lerman, L. M.: Hamiltonian systems with loops of a separatrix of a saddle-center. Selecta math. Sov. 10, 297-306 (1991) · Zbl 0743.58017
[14] Malomed, B.; Wagenknecht, T.; Champneys, A. R.; Pearce, M. J.: Accumulation of embedded solitons in systems with quadratic nonlinearity. Chaos 15, 037116 (2005) · Zbl 1144.37382
[15] Meyer, K. R.; Hall, G. R.: Introduction to Hamiltonian dynamical systems and the N-body problem. (1992) · Zbl 0743.70006
[16] Mielke, A.; Holmes, P. J.; O’reilly, O.: Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center. J. dynam differential equations 4, 95-126 (1992) · Zbl 0749.58022
[17] Morales-Ruiz, J. J.: Differential Galois theory and non-integrability of Hamiltonian systems. (1999) · Zbl 0934.12003
[18] Morales-Ruiz, J. J.; Peris, J. M.: On a Galoisian approach to the splitting of separatrices. Ann. fac. Sci. Toulouse math. 8, 125-141 (1999) · Zbl 0971.34076
[19] Moser, J.: On the generalization of a theorem of A. Liapunoff. Commun. pure appl. Math. 11, 257-271 (1958) · Zbl 0082.08003
[20] Rüssmann, H.: Über das verhalten analytischer hamiltonscher differentialgleichungen in der nähe einer gleichgewichtslösung. Math. ann. 154, 285-300 (1964) · Zbl 0124.04701
[21] Towers, I.; Buryak, A. V.; Sammut, R. A.; Malomed, B. A.: Stable localized vortex solitons. Phys. rev. E 63, 055601 (2001) · Zbl 0972.35144
[22] Vanderbauwhede, A.; Fiedler, B.: Homoclinic period blow-up in reversible and conservative systems. Z. angew. Math. phys. 43, 292-318 (1992) · Zbl 0762.34023
[23] Van Der Put, M.; Singer, M. F.: Galois theory of linear differential equations. (2003) · Zbl 1036.12008
[24] Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. (1990) · Zbl 0701.58001
[25] Wolfram, S.: The Mathematica book. (2003) · Zbl 0924.65002
[26] Yagasaki, K.: The method of Melnikov for perturbations of multi-degree-of-freedom Hamiltonian systems. Nonlinearity 12, 799-822 (1999) · Zbl 0967.34042
[27] Yagasaki, K.: Horseshoes in two-degree-of-freedom Hamiltonian systems with saddle-centers. Arch. ration. Mech. anal. 154, 275-296 (2000) · Zbl 0985.37058
[28] Yagasaki, K.: Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of-freedom Hamiltonian systems with saddle-centers. Nonlinearity 16, 2003-2012 (2003) · Zbl 1070.37038
[29] Yagasaki, K.: Detection of homoclinic and heteroclinic behavior in Hamiltonian systems with saddle-centers. Equadiff 2003: international conference on differential equations, Hasselt 2003, 984-989 (2005) · Zbl 1106.37044
[30] K. Yagasaki, Chaos and diffusion in four-dimensional, non-conservative, reversible systems with saddle-centers, in: Proceedings of Fifth EUROMECH Nonlinear Dynamics Conference, 7--12 August, Eindhoven, The Netherlands, 2005, Paper No. 13-312
[31] Yang, J.: Dynamics of embedded solitons in the extended KdV equations. Stud. appl. Math. 106, 337-365 (2001) · Zbl 1152.76344
[32] Yang, J.; Malomed, B. A.; Kaup, D. J.; Champneys, A. R.: Embedded solitons: A new type of solitary wave. Math. comput simulation 56, 585-600 (2001) · Zbl 0976.35059