×

A note on generalized Weyl’s theorem. (English) Zbl 1101.47002

It is shown that, if an operator \(T\) on a complex Hilbert space or its adjoint \(T^{*}\) has the single-valued extension property, then the spectral mapping theorem holds for the B-Weyl spectrum. If, moreover, \(T\) is isoloid and the generalized Weyl’s theorem holds for \(T\), then the generalized Weyl’s theorem holds for \(f(T)\) for every complex-valued analytic function \(f\) on a neighborhood of the spectrum of \(T\). Finally, an application is given for algebraically paranormal operators.

MSC:

47A10 Spectrum, resolvent
47A53 (Semi-) Fredholm operators; index theories
47B20 Subnormal operators, hyponormal operators, etc.
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aiena, P.; Monsalve, O., Operators which do not have the single valued extension property, J. math. anal. appl., 250, 435-448, (2000) · Zbl 0978.47002
[2] Berkani, M., On a class of quasi-Fredholm operators, Integral equations operator theory, 34, 244-249, (1999) · Zbl 0939.47010
[3] Berkani, M., Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. amer. math. soc., 130, 1717-1723, (2002) · Zbl 0996.47015
[4] Berkani, M.; Arroud, A., Generalized Weyl’s theorem and hyponormal operators, J. austral. math. soc., 76, 291-302, (2004) · Zbl 1061.47021
[5] Berkani, M.; Koliha, J.J., Weyl type theorems for bounded linear operators, Acta sci. math. (Szeged), 69, 359-376, (2003) · Zbl 1050.47014
[6] Berkani, M.; Sarih, M., On semi B-Fredholm operators, Glasgow math. J., 43, 457-465, (2001) · Zbl 0995.47008
[7] Cao, X.; Guo, M.; Meng, B., Weyl type theorem for p-hyponormal and M-hyponormal operators, Studia math., 163, 177-188, (2004) · Zbl 1075.47011
[8] Chourasia, N.N.; Ramanujan, P.B., Paranormal operators on Banach spaces, Bull. austral. math. soc., 21, 161-168, (1980) · Zbl 0417.47005
[9] Curto, R.E.; Han, Y.M., Weyl’s theorem for algebraically paranormal operators, Integral equations operator theory, 47, 307-314, (2003) · Zbl 1054.47018
[10] Curto, R.E.; Han, Y.M., Weyl’s theorem, a-Weyl’s theorem and local spectral theory, J. London math. soc. (2), 67, 499-509, (2003) · Zbl 1063.47001
[11] Finch, J.K., The single valued extension property on a Banach space, Pacific J. math., 58, 61-69, (1975) · Zbl 0315.47002
[12] Laursen, K.B.; Neumann, M.M., An introduction to local spectral theory, (2000), Clarendon Oxford · Zbl 0806.47001
[13] Rakočević, V., Operators obeying a-Weyl’s theorem, Rev. roumaine math. pures appl., 34, 915-919, (1989) · Zbl 0686.47005
[14] Stampfli, J., Hyponormal operators, Pacific J. math., 12, 1453-1458, (1962) · Zbl 0129.08701
[15] Weyl, H., Über beschränkte quadratische formen, deren differenz vollsteig ist, Rend. circ. mat. Palermo, 27, 373-392, (1909) · JFM 40.0395.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.