zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Inexact proximal point method for general variational inequalities. (English) Zbl 1101.49026
Summary: We suggest and analyze a new inexact proximal point method for solving general variational inequalities, which can be considered as an implicit predictor-corrector method. An easily measurable error term is proposed with further relaxed error bound and an optimal step length is obtained by maximizing the profit-function and is dependent on the previous points. Our results include several known and new techniques for solving variational inequalities and related optimization problems. Results obtained in this paper can be viewed as an important improvement and refinement of the previously known results. Preliminary numerical experiments are included to illustrate the advantage and efficiency of the proposed method.

MSC:
49M37Methods of nonlinear programming type in calculus of variations
49J40Variational methods including variational inequalities
WorldCat.org
Full Text: DOI
References:
[1] Bnouhachem, A.; Liu, Z. B.: Alternating direction method for maximum entropy subject to simple constraint sets. J. optim. Theory appl. 121, 259-277 (2004) · Zbl 1062.49007
[2] Bnouhachem, A.: A self-adaptive method for solving general mixed variational inequalities. J. math. Anal. appl. 309, 136-150 (2005) · Zbl 1074.49001
[3] Chen, G.; Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. program. 64, 81-101 (1994) · Zbl 0823.90097
[4] Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming. Math. oper. Res. 18, 202-226 (1993) · Zbl 0807.47036
[5] Eckstein, J.: Approximate iterations in Bregman-function-based proximal algorithms. Math. program. 83, 113-123 (1998) · Zbl 0920.90117
[6] Ferris, M. C.; Pang, J. S.: Engineering and economic applications of complementarity problems. SIAM rev. 39, 669-713 (1997) · Zbl 0891.90158
[7] Glowinski, R.: Numerical methods for nonlinear variational problems. (1984) · Zbl 0536.65054
[8] Goldstein, A. A.: Convex programming in Hilbert space. Bull. amer. Math. soc. 70, 709-710 (1964) · Zbl 0142.17101
[9] Han, D. R.; He, B. S.: A new accuracy criterion for approximate proximal point algorithms. J. math. Anal. appl. 263, 343-354 (2001) · Zbl 0995.65062
[10] Harker, P. T.; Pang, J. S.: Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. program. 48, 161-220 (1990) · Zbl 0734.90098
[11] He, B. S.: Inexact implicit methods for monotone general variational inequalities. Math. program. 86, 199-216 (1999) · Zbl 0979.49006
[12] He, B. S.; Liao, L. Z.: Improvements of some projection methods for monotone nonlinear variational inequalities. J. optim. Theory appl. 112, 111-128 (2002) · Zbl 1025.65036
[13] He, B. S.; Yang, H.; Meng, Q.; Han, D. R.: Modified goldstein -- levitin -- Polyak projection method for asymmetric strongly monotone variational inequalities. J. optim. Theory appl. 112, 129-143 (2002) · Zbl 0998.65066
[14] Khobotov, E. N.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR comput. Math. math. Phys. 27, 120-127 (1987) · Zbl 0665.90078
[15] Korpelevich, G. M.: The extragradient method for finding saddle points and other problems. Ekon. mat. Metody 12, 747-756 (1976) · Zbl 0342.90044
[16] Levitin, E. S.; Polyak, B. T.: Constrained minimization problems. USSR comput. Math. math. Phys. 6, 1-50 (1966) · Zbl 0161.07002
[17] Marcotee, P.; Dussault, J. P.: A note on a globally convergent Newton method for solving variational inequalities. Oper. res. Lett. 6, 35-42 (1987) · Zbl 0623.65073
[18] Noor, M. A.: General variational inequalities. Appl. math. Lett. 1, 119-121 (1988) · Zbl 0655.49005
[19] Noor, M. A.: New extragradient-type methods for general variational inequalities. J. math. Anal. appl. 277, 379-395 (2003) · Zbl 1033.49015
[20] Noor, M. A.: Some developments in general variational inequalities. Appl. math. Comput. 152, 199-277 (2004) · Zbl 1134.49304
[21] Noor, M. A.: Merit functions for general variational inequalities. J. math. Anal. appl. 316, 736-752 (2006) · Zbl 1085.49011
[22] M.A. Noor, Projection-approximate methods for general variational inequalities, J. Math. Anal. Appl. (2006), in press · Zbl 1086.49005
[23] M.A. Noor, A. Bnouhachem, Self-adaptive methods for general variational inequalities, Comput. Math. Appl., submitted for publication · Zbl 1172.65034
[24] Noor, M. A.; Noor, K. I.: Self-adaptive projection algorithms for general variational inequalities. Appl. math. Comput. 151, 659-670 (2004) · Zbl 1053.65048
[25] Noor, M. A.; Noor, K. I.; Rassias, T. M.: Some aspects of variational inequalities. J. comput. Appl. math. 47, 285-312 (1993) · Zbl 0788.65074
[26] Rockafellar, R. T.: Monotone operators and the proximal point algorithm. SIAM J. Control optim. 14, 877-898 (1976) · Zbl 0358.90053
[27] Solodov, M. V.; Svaiter, B. F.: Error bounds for proximal point subproblems and associated inexact proximal point algorithms. Math. program. Ser. B 88, 371-389 (2000) · Zbl 0963.90064
[28] Solodov, M. V.; Svaiter, B. F.: A unified framework for some inexact proximal point algorithms. Numer. funct. Anal. optim. 22, 1013-1035 (2001) · Zbl 1052.49013
[29] Xiu, N.; Zhang, J.; Noor, M. A.: Tangent projection equations and general variational inequalities. J. math. Anal. appl. 258, 755-762 (2001) · Zbl 1008.49010