Peligrad, Magda; Utev, Sergey Central limit theorem for stationary linear processes. (English) Zbl 1101.60014 Ann. Probab. 34, No. 4, 1608-1622 (2006). Summary: We establish the central limit theorem for linear processes with dependent innovations including martingales and mixingale type of assumptions as defined by D. L. McLeish [Ann. Probab. 5, 616–621 (1977; Zbl 0367.60021)] and motivated by M. I. Gordin [Sov. Math., Dokl. 10, 1174–1176 (1969); translation from Dokl. Akad. Nauk SSSR 188, 739–741 (1969; Zbl 0212.50005)]. In doing so we shall preserve the generality of the coefficients, including the long range dependence case, and we shall express the variance of partial sums in a form easy to apply. Ergodicity is not required. Cited in 1 ReviewCited in 32 Documents MSC: 60F05 Central limit and other weak theorems 60G10 Stationary stochastic processes 60G42 Martingales with discrete parameter 60G48 Generalizations of martingales Keywords:ergodic theorem; martingale Citations:Zbl 0367.60021; Zbl 0212.50005 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Billingsley, P. (1961). The Lindeberg–Lévy theorem for martingales. Proc. Amer. Math. Soc. 12 788–792. JSTOR: · Zbl 0129.10701 · doi:10.2307/2034876 [2] Billingsley, P. (1999). Convergence of Probability Measures , 2nd ed. Wiley, New York. · Zbl 0944.60003 [3] Bradley, R. C. (2002, 2003). Introduction to strong mixing conditions. 1 , 2 . Technical report, Dept. Mathematics, Indiana Univ., Bloomington. Custom Publishing of I.U., Bloomington. · Zbl 1024.60010 [4] Dedecker, J. and Merlevède, F. (2002). Necessary and sufficient conditions for the conditional central limit theorem. Ann. Probab. 30 1044–1081. · Zbl 1015.60016 · doi:10.1214/aop/1029867121 [5] Dedecker, J. and Rio, E. (2000). On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 1–34. · Zbl 0949.60049 · doi:10.1016/S0246-0203(00)00111-4 [6] Doukhan, P., Massart, P. and Rio, E. (1994). The functional central limit theorem for strongly mixing processes. Ann. Inst. H. Poincaré Probab. Statist. 30 63–82. · Zbl 0790.60037 [7] Durr, D. and Goldstein, S. (1986). Remarks on the central limit theorem for weakly dependent random variables. Lecture Notes in Math. 1158 104–118. Springer, Berlin. · Zbl 0582.60036 · doi:10.1007/BFb0080211 [8] Gordin, M. I. (1969). The central limit theorem for stationary processes. Soviet Math. Dokl. 10 1174–1176. · Zbl 0212.50005 [9] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York. · Zbl 0462.60045 [10] Hannan, E. J. (1979). The central limit theorem for time series regression. Stochastic Process. Appl. 9 281–289. · Zbl 0421.60018 · doi:10.1016/0304-4149(79)90050-4 [11] Heyde, C. C. (1974). On the central limit theorem for stationary processes. Z. Wahrsch. Verw. Gebiete 30 315–320. · Zbl 0297.60014 · doi:10.1007/BF00532619 [12] Ibragimov, I. A. (1960). On asymptotic distribution of values of certain sums. Vestnik Leningrad. Univ. 15 55–69. (In Russian.) · Zbl 0202.46705 [13] Ibragimov, I. A. (1962). Some limit theorems for stationary processes. Theory Probab. Appl. 7 349–382. · Zbl 0119.14204 · doi:10.1137/1107036 [14] Ibragimov, I. A. (1963). A central limit theorem for a class of dependent random variables. Theory Probab. Appl. 8 83–89. · Zbl 0123.36103 · doi:10.1137/1108007 [15] Ibragimov, I. A. and Linnik, Yu. V. (1971). Independent and Stationary Sequences of Random Variables . Wolters, Groningen. · Zbl 0398.39003 [16] Kac, M. (1946). On the distribution of values of sums of the type \(\sum f(2^kt)\). Ann. of Math. (2) 47 33–49. JSTOR: · Zbl 0063.03091 · doi:10.2307/1969033 [17] Maxwell, M. and Woodroofe, M. (2000). Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 713–724. · Zbl 1044.60014 · doi:10.1214/aop/1019160258 [18] McLeish, D. L. (1977). On the invariance principle for nonstationary mixingales. Ann. Probab. 5 616–621. JSTOR: · Zbl 0367.60021 · doi:10.1214/aop/1176995772 [19] Peligrad, M. (1981). An invariance principle for dependent random variables. Z. Wahrsch. Verw. Gebiete 57 495–507. · Zbl 0485.60032 · doi:10.1007/BF01025871 [20] Peligrad, M. and Utev, S. (1997). Central limit theorem for linear processes. Ann. Probab. 25 443–456. · Zbl 0876.60013 · doi:10.1214/aop/1024404295 [21] Rio, E. (2000). Théorie asymptotique des processus aléatoires faiblement dépendants . Mathém. Appl. SMAI 31 . Springer, Berlin. · Zbl 0944.60008 [22] Volný, D. (1993). Approximating martingales and the central limit theorem for strictly stationary processes. Stochastic Process. Appl. 44 41–74. · Zbl 0765.60025 · doi:10.1016/0304-4149(93)90037-5 [23] Wu, W. B. (2002). Central limit theorems for functionals of linear processes and their applications. Statist. Sinica 12 635–649. · Zbl 1018.60022 [24] Wu, W. B. and Min, W. (2005). On linear processes with dependent innovations. Stochastic Process. Appl. 115 939–958. · Zbl 1081.62071 · doi:10.1016/j.spa.2005.01.001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.