Hitting times for independent random walks on \(\mathbb Z^d\). (English) Zbl 1101.60074

Summary: We consider a system of asymmetric independent random walks on \(\mathbb Z^d\), denoted by \(\{\eta_t,\;t \in \mathbb R\}\), stationary under the product Poisson measure \(\nu_\rho\) of marginal density \(\rho > 0\). We fix a pattern \(\mathcal A\), an increasing local event, and denote by \(\tau\) the hitting time of \(\mathcal A\). By using a loss network representation of our system, at small density, we obtain a coupling between the laws of \(\eta t\) conditioned on \(\{\tau > t\}\) for all times \(t\). When \(d\geq 3\), this provides bounds on the rate of convergence of the law of \(\eta t\) conditioned on \(\{\tau >t\}\) toward its limiting probability measure as \(t\) tends to infinity. We also treat the case where the initial measure is close to \(\nu\rho\) without being product.


60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C22 Interacting particle systems in time-dependent statistical mechanics
60J25 Continuous-time Markov processes on general state spaces
Full Text: DOI arXiv


[1] Andjel, E. (1982). Invariant measures for the zero range process. Ann. Probab. 10 525–547. · Zbl 0492.60096 · doi:10.1214/aop/1176993765
[2] Asselah, A. (2005). On the Dirichlet problem for asymmetric zero-range process on increasing domains. Probab. Theory Related Fields 131 62–96. · Zbl 1064.60190 · doi:10.1007/s00440-004-0367-6
[3] Asselah, A. and Castell, F. (2003). Existence of quasi-stationary measures for asymmetric attractive particle systems on \(\mathbb Z^d\). Ann. Appl. Probab. 13 1569–1590. · Zbl 1079.60075 · doi:10.1214/aoap/1069786511
[4] Asselah, A. and Dai Pra, P. (2001). Quasi-stationary measures for conservative dynamics in the infinite lattice. Ann. Probab. 29 1733–1754. · Zbl 1018.60092 · doi:10.1214/aop/1015345770
[5] Asselah, A. and Ferrari, P. (2002). Regularity of quasi-stationary measures for simple exclusion in dimension \(d\geq5\). Ann. Probab. 30 1913–1932. · Zbl 1014.60089 · doi:10.1214/aop/1039548376
[6] Eveson, S. P. and Nussbaum, R. D. (1995). An elementary proof of the Birkhoff–Hopf theorem. Math. Proc. Cambridge Philos. Soc. 117 31–55. · Zbl 0834.47028 · doi:10.1017/S0305004100072911
[7] Fernandez, R., Ferrari, P. A. and Garcia, N. L. (2001). Loss network representation of Peierls contours. Ann. Probab. 29 902–937. · Zbl 1015.60090 · doi:10.1214/aop/1008956697
[8] Fernandez, R., Ferrari, P. A. and Garcia, N. L. (2002). Perfect simulation for interacting point processes, loss networks and Ising models. Stochastic Process. Appl. 102 63–88. · Zbl 1075.60583 · doi:10.1016/S0304-4149(02)00180-1
[9] Hennequin, P.-L. (1963). Processus de Markoff en cascade. Ann. Inst. H. Poincaré 18 109–195. · Zbl 0141.15802
[10] Lawler, G. (1996). Intersection of Random Walks . Birkhäuser, Boston. · Zbl 0925.60078
[11] Liggett, T. M. (1973). An infinite particle system with zero range interaction. Ann. Probab. 1 240–253. · Zbl 0264.60083 · doi:10.1214/aop/1176996977
[12] Ney, P. and Spitzer, F. (1966). The Martin boundary for random walk. Trans. Amer. Math. Soc. 121 116–132. JSTOR: · Zbl 0141.15601 · doi:10.2307/1994335
[13] Sethuraman, S. (2001). On extremal measures for conservative particle systems. Ann. Inst. H. Poincaré Probab. Statist. 37 139–154. · Zbl 0981.60098 · doi:10.1016/S0246-0203(00)01062-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.