zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A stochastic model of AIDS and condom use. (English) Zbl 1101.92037
Summary: We introduce stochasticity into a model of AIDS and condom use via the technique of parameter perturbation which is standard in stochastic population modelling. We show that the model established in this paper possesses non-negative solutions as desired in any population dynamics. We also carry out a detailed analysis on asymptotic stability both in probability one and in p th moment. Our results reveal that a certain type of stochastic perturbation may help to stabilise the underlying system.

60H10Stochastic ordinary differential equations
60J70Applications of Brownian motions and diffusion theory
Full Text: DOI
[1] Arnold, L.: Stochastic differential equations: theory and applications. (1972) · Zbl 0216.45001
[2] Bahar, A.; Mao, X.: Stochastic delay Lotka -- Volterra model. J. math. Anal. appl. 292, 364-380 (2004) · Zbl 1043.92034
[3] Blythe, S. P.; Anderson, R. M.: Distributed incubation and infections periods in models of transmission dynamics of human immunodeficiency virus (HIV). IMA J. Math. appl. Med. biol. 5, 1-19 (1988) · Zbl 0686.92015
[4] Blythe, S. P.; Anderson, R. M.: Variable infectiousness in HIV transmission models. IMA J. Math. appl. Med. biol. 5, 181-200 (1988) · Zbl 0655.92021
[5] Blythe, S. P.; Anderson, R. M.: Heterogenous sexual activity models of HIV transmission in male homosexual populations. IMA J. Math. appl. Med. biol. 5, 237-260 (1988) · Zbl 0688.92010
[6] Braumann, C. A.: Variable effort harvesting models in random environments: generalization to density-dependent noise intensities. Math. biosci. 177 -- 178, 229-245 (2002) · Zbl 1003.92027
[7] Friedman, A.: Stochastic differential equations and their applications. (1976) · Zbl 0323.60057
[8] Gard, T. C.: Introduction to stochastic differential equations. (1988) · Zbl 0628.60064
[9] Greenhalgh, D.; Doyle, M.; Lewis, F.: A mathematical model of AIDS and condom use. IMA J. Math. appl. Med. biol. 18, 225-262 (2001) · Zbl 0998.92032
[10] Jacquez, J. A.; Simon, C. P.; Koopman, J. S.: Structured mixing: heterogenous mixing by the definition of activity groups. Lecture notes in biomath. 83, 301-315 (1989)
[11] Jacquez, J. A.; Simon, C. P.; Koopman, J. S.: The reproduction number in deterministic models of contagious disease. Comments theor. Biol. 2, 159-209 (1988)
[12] Lipster, R. S.; Shiryayev, A. N.: Theory of martingales. (1986)
[13] Mao, X.: Stochastic differential equations and applications. (1997) · Zbl 0892.60057
[14] Mao, X.; Marion, G.; Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stochastic process. Appl. 97, 95-110 (2002) · Zbl 1058.60046
[15] Mao, X.; Yuan, C.; Zou, J.: Stochastic differential delay equations of population dynamics. J. math. Anal. appl. 304, 296-320 (2005) · Zbl 1062.92055
[16] . (1995)
[17] . (2004)