×

zbMATH — the first resource for mathematics

Observer design for discrete-time systems subject to time-delay nonlinearities. (English) Zbl 1101.93019
The nonlinear observer design for dynamical discrete-time systems with both constant and time-varying delay nonlinearities is addressed. The observation problem is reduced to a stability problem of linear systems with structured known uncertainties. In case of constant delay systems, the developed linear matrix inequality (LMI) conditions that guarantees the existence of the observergain is delay-independent. For time-varying case a delay-depended condition is obtained. For both cases, the delay is assumed to be known to set-up the dynamics of the nonlinear observer. The presented observer can be seen as an extension of discrete-time LMI-based observers that do not involve delay nonlinearities.

MSC:
93B07 Observability
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/00207170110107256 · Zbl 1031.93045 · doi:10.1080/00207170110107256
[2] DOI: 10.1109/9.935073 · Zbl 1014.93033 · doi:10.1109/9.935073
[3] DOI: 10.1109/CDC.1997.649780 · doi:10.1109/CDC.1997.649780
[4] DOI: 10.1016/S0167-6911(01)00129-3 · Zbl 0986.93009 · doi:10.1016/S0167-6911(01)00129-3
[5] Boyd S, SIAM (1994)
[6] DOI: 10.1080/00207179308934406 · Zbl 0772.93018 · doi:10.1080/00207179308934406
[7] DOI: 10.1016/0167-6911(93)90016-Y · Zbl 0783.93073 · doi:10.1016/0167-6911(93)90016-Y
[8] Dugard L, Stability and Control of Time-Delay Systems (1997)
[9] DOI: 10.1080/00207170500041472 · Zbl 1083.93045 · doi:10.1080/00207170500041472
[10] Gu K, Proceedings of the 39th IEEE Conference in Decision and Control pp 2805– (2000)
[11] DOI: 10.1007/978-1-4612-0039-0 · doi:10.1007/978-1-4612-0039-0
[12] Hale JK, Introduction to Functional Differential Equations (1993)
[13] DOI: 10.1109/TAC.2002.808468 · Zbl 1364.93093 · doi:10.1109/TAC.2002.808468
[14] DOI: 10.1016/0167-6911(91)90098-Y · Zbl 0733.93010 · doi:10.1016/0167-6911(91)90098-Y
[15] DOI: 10.1109/TAC.1971.1099826 · doi:10.1109/TAC.1971.1099826
[16] DOI: 10.1080/00207179408923090 · Zbl 0802.93007 · doi:10.1080/00207179408923090
[17] DOI: 10.1109/9.661604 · Zbl 0905.93009 · doi:10.1109/9.661604
[18] DOI: 10.1080/002071798222640 · Zbl 0933.93019 · doi:10.1080/002071798222640
[19] Reif K, IEEE Trans. Automat. Cont. 44 pp 741– (1999)
[20] DOI: 10.1109/78.774779 · Zbl 0972.93071 · doi:10.1109/78.774779
[21] DOI: 10.1080/00207177308932395 · Zbl 0249.93006 · doi:10.1080/00207177308932395
[22] DOI: 10.1080/00207170210126245 · Zbl 1027.93007 · doi:10.1080/00207170210126245
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.