Grynkiewicz, D. J. On a partition analog of the Cauchy-Davenport Theorem. (English) Zbl 1102.11016 Acta Math. Hung. 107, No. 1-2, 161-174 (2005). Summary: Let \(G\) be a finite abelian group, and let \(n\) be a positive integer. From the Cauchy-Davenport Theorem it follows that if \(G\) is a cyclic group of prime order, then any collection of \(n\) subsets \(A_1,A_2,\ldots,A_n\) of \(G\) satisfies \(|\sum_{i=1}^n A_i| \geq \min \{|G|,\,\sum_{i=1}^n |A_i|-n+1\}\). M. Kneser [Math. Z. 64, 429–434 (1955; Zbl 0064.04305)] generalized the Cauchy-Davenport Theorem for any abelian group. In this paper, we prove a sequence-partition analog of the Cauchy-Davenport Theorem along the lines of Kneser’s Theorem. A particular case of our theorem was proved by J. E. Olson [J. Number Theory 9, 63–70 (1977; Zbl 0351.20032)] in the context of the theorem of P. Erdős, G. Ginzburg and A. Ziv [Bull. Res. Council Israel 10F, 41–43 (1961; Zbl 0063.00009)]. Cited in 14 Documents MSC: 11B75 Other combinatorial number theory 05D10 Ramsey theory Keywords:zero sum; Cauchy-Davenport theorem Citations:Zbl 0064.04305; Zbl 0351.20032; Zbl 0063.00009 PDF BibTeX XML Cite \textit{D. J. Grynkiewicz}, Acta Math. Hung. 107, No. 1--2, 161--174 (2005; Zbl 1102.11016) Full Text: DOI OpenURL