×

Stickelberger ideals of conductor \(p\) and their application. (English) Zbl 1102.11059

Authors’ abstract: Let \(p\) be an odd prime number and \(F\) a number field. Let \(K=F(\zeta_ p)\) and \(\Delta= \text{Gal}(K/F)\). Let \(S_\Delta\) be the Stickelberger ideal of the group ring \(Z[\Delta]\) defined in the previous paper [H. Ichimura, Stickelberger ideals and normal bases of rings of \(p\)-integers, Math. J. Okayama Univ., in press.]. As a consequence of a \(p\)-integer version of a theorem of L. R. McCulloh [A Stickelberger condition on Galois module structure for Kummer extensions of prime degree, Algebr. Number Fields, Proc. Symp. London Math. Soc., Univ. Durham 1975, 561–588 (1977; Zbl 0389.12005); Galois module structure of elementary abelian extensions, J. Algebra 82, 102–134 (1983; Zbl 0508.12008)], it follows that \(F\) has the Hilbert-Speiser type property for the rings of p-integers of elementary abelian extensions over \(F\) of exponent \(p\) if and only if the ideal \(S_\Delta\) annihilates the \(p\)-ideal class group of \(K\). In this paper, we study some properties of the ideal \(S_\Delta\), and check whether or not a subfield of \(\mathbb Q(\zeta_p)\) satisfies the above property.

MSC:

11R18 Cyclotomic extensions
11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] L. N. Childs, Tame Kummer extensions and Stickelberger ideals, Illinois J. Math., 25 (1981), 258-266. · Zbl 0438.12002
[2] A. Fröhlich, Locally free modules over arithmetic orders, J. Reine Angew. Math., 274 /275 (1975), 112-138. · Zbl 0316.12013
[3] A. Fröhlich, Stickelberger without Gauss Sums, Algebraic Number Fields, Durham Symposium, 1975, (ed. A. Fröhlich), 587-607, Academic Press, London, 1977. · Zbl 0376.12002
[4] A. Fröhlich, Galois Module Structure of Rings of Integers, Springer, Berlin-Heidelberg-New York, 1983. · Zbl 0501.12012
[5] H. Hasse, Über die Klassenzahl Abelscher Zahlkörper, Akademia-Verlag, Berlin, 1952. · Zbl 0046.26003
[6] D. Hilbert, The Theory of Algebraic Integers, Springer, Berlin-Heidelberg-New York, 1997.
[7] K. Horie, On the class numbers of cyclotomic fields, Manuscripta Math., 65 (1989), 465-477. · Zbl 0706.11060
[8] H. Ichimura, Stickelberger ideals and normal bases of rings of \(p\)-integers, Math. J. Okayama Univ., · Zbl 1195.11145
[9] H. Ichimura, Normal integral bases and ray class groups, II, Yokohama Math. J., · Zbl 1238.11102
[10] K. Iwasawa, A class number formula for cyclotomic fields, Ann. of Math., 76 (1962), 171-179. · Zbl 0125.02003
[11] K. Iwasawa, A note on ideal class groups, Nagoya Math. J., 27 (1966), 239-247. · Zbl 0139.28104
[12] H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math., 121 (1968), 1-29. · Zbl 0167.04503
[13] D. E. Knuth, The Art of Computer Programming, 2 : Seminumerical Algorithm (2nd. ed.), Addison-Wesley, Massachusetts, 1981. · Zbl 0477.65002
[14] D. H. Lehmer and J. Masley, Table of the cyclotomic class numbers \(h^*(p)\) and their factors for \(200 < p < 521\), Math. Comp., 32 (1978), 577-582. · Zbl 0382.12003
[15] L. R. McCulloh, A Stickelberger condition on Galois module structure for Kummer extensions of prime degree, Algebraic Number Fields, Durham Symposium, 1975, (ed. A. Fröhlich), 190-204, Academic Press, London, 1977. · Zbl 0389.12005
[16] L. R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra, 82 (1983), 102-134. · Zbl 0508.12008
[17] K. Uchida, Class numbers of imaginary abelian number fields, III, Tohoku Math. J., 23 (1971), 573-580. · Zbl 0241.12002
[18] H. Wada and M. Saito, A Table of Ideal Class Groups of Imaginary Quadratic Fields, Sophia Kokyuroku, 28 , Sophia Univ., Tokyo, 1988. · Zbl 0629.12003
[19] L. C. Washington, Introduction to Cyclotomic Fields (2nd ed.), Springer, Berlin-Heidelberg-New York, 1996. · Zbl 0484.12001
[20] K. Yamamura, Table of relative class numbers of imaginary abelian number fields of prime power conductor \(\leq 2^{10}=1024\), available at ftp://tnt.math.metro-u.ac.jp/pub/table/rcn/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.