zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Integrating factors, adjoint equations and Lagrangians. (English) Zbl 1102.34002
A new concept of an adjoint equation is used for construction of a Lagrangian for any system of differential equations. The method presented is illustrated by considering several equations traditionally regarded as equations without Lagrangians. Noether’s theorem is applied to the Maxwell equations.

34A05Methods of solution of ODE
70H06Completely integrable systems and methods of integration (mechanics of particles and systems)
Full Text: DOI
[1] Bessel-Hagen, E.: Über die erhaltungssätze der elektrodynamik. Math. ann. 84, 258-276 (1921) · Zbl 48.0877.02
[2] Courant, R.; Hilbert, D.: Methods of mathematical physics. Vol. II: partial differential equations, by R. Courant. (1989) · Zbl 0729.35001
[3] Ibragimov, N. H.: Lie -- Bäcklund groups and conservation laws. Dokl. akad. Nauk SSSR 230, No. 1, 26-29 (1976) · Zbl 0358.35052
[4] Ibragimov, N. H.: Sur l’équivalence des équations d’évolution, qui admettent une algébre de Lie -- Bäcklund infinie. C. R. Acad. sci. Paris sér. I 293, 657-660 (1981) · Zbl 0482.35047
[5] Ibragimov, N. H.: Transformation groups applied to mathematical physics. (1983) · Zbl 0529.53014
[6] Ibragimov, N. H.: Elementary Lie group analysis and ordinary differential equations. (1999) · Zbl 1047.34001
[7] Ibragimov, N. H.; Kolsrud, T.: Lagrangian approach to evolution equations: symmetries and conservation laws. Nonlinear dynamics 36, No. 1, 29-40 (2004) · Zbl 1106.70012
[8] Landau, L. D.; Lifshitz, E. M.: Field theory. Course of theoretical physics, vol. 2. (1962) · Zbl 0178.28704
[9] Noether, E.: Invariante variationsprobleme. Königliche gesellschaft der wissenschaften, göttingen math. Phys. kl. 1, No. 3, 235-257 (1918)