zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Guaranteed cost control of time-delay chaotic systems. (English) Zbl 1102.37305
Summary: This article studies a guaranteed cost control problem for a class of time-delay chaotic systems. Attention is focused on the design of memory state feedback controllers such that the resulting closed-loop system is asymptotically stable and an adequate level of performance is also guaranteed. Using the Lyapunov method and LMI (linear matrix inequality) framework, two criteria for the existence of the controller are derived in terms of LMIs. A numerical example is given to illustrate the method proposed.

37D45Strange attractors, chaotic dynamics
93D05Lyapunov and other classical stabilities of control systems
93D15Stabilization of systems by feedback
LMI toolbox
Full Text: DOI
[1] Mackey, M.; Glass, L.: Science. 197, 287-289 (1977)
[2] Lu, H.; He, Z.: IEEE trans circuit syst. 43, 700-702 (1996)
[3] Tian, Y.; Gao, F.: Physica D. 117, 1-12 (1998)
[4] Chen, G.; Yu, H.: IEEE trans circuit syst. 46, 767-772 (1999)
[5] Guan, X. P.; Chen, C. L.; Peng, H. P.; Fan, Z. P.: Int J bifurcat chaos. 13, 193-205 (2003)
[6] Sun, J.: Chaos, solitons & fractals. 21, 143-150 (2004)
[7] Park, J. H.; Kwon, O.: Chaos, solitons & fractals. 23, 445-450 (2005)
[8] Ott, E.; Grebogi, C.; Yorke, J. A.: Phys rev lett. 64, 1196-1199 (1990)
[9] Chang, S. S. L.; Peng, T. K. C.: IEEE trans automat control. 17, 474-483 (1979)
[10] Yu, L.; Gao, F.: J franklin inst. 338, 101-110 (2001)
[11] Park, J. H.: Appl math comput. 140, 523-535 (2003)
[12] Gu K. In: Proc IEEE CDC, Australia, December 2000. p. 2805-10.
[13] Yue, D.; Won, S.: Electron lett. 37, 992-993 (2001)
[14] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory. (1994) · Zbl 0816.93004
[15] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M.: LMI control toolbox user’s guide. (1995)
[16] Hale, J.; Lunel, S. M. Verduyn: Introduction to functional differential equations. (1993) · Zbl 0787.34002
[17] Shobukhov, A.: Int J bifurcat chaos. 8, 1347-1354 (1998)