Shahzad, Naseer; Udomene, Aniefiok Fixed point solutions of variational inequalities for asymptotically nonexpansive mappings in Banach spaces. (English) Zbl 1102.47056 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 64, No. 3, 558-567 (2006); erratum ibid. 66, No. 12, 2980-2981 (2007). Let \(E\) be a real Banach space with uniformly Gâteaux differentiable norm, \(K\) a nonempty bounded closed convex subset of \(E\), and \(T: K \to K\) an asymptotically nonexpansive mapping, i.e., \(\| T^n x- T^n y \| \leq k_n \| x-y \|\) for all \(x, y \in K\), where \(k_n \in [1, \infty)\), \(\lim_{n \to \infty} k_n=1\). Let \(f: K \to K\) be a contraction. The authors study approximating properties of the sequence \(\{ x_n\}\) defined by \(x_n=(1-k_n^{-1} t_n) f(x_n)+k_n^{-1} t_n T^n x_n\) (\(t_n>0\), \(\lim_{n \to \infty} t_n=1\)) with respect to the set of fixed points of the mapping \(T\). Reviewer: Mikhail Yu. Kokurin (Yoshkar-Ola) Cited in 1 ReviewCited in 27 Documents MSC: 47J25 Iterative procedures involving nonlinear operators 47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. 47H06 Nonlinear accretive operators, dissipative operators, etc. 47J20 Variational and other types of inequalities involving nonlinear operators (general) Keywords:viscosity approximation; asymptotically nonexpansive mapping; variational inequality; normal structure PDF BibTeX XML Cite \textit{N. Shahzad} and \textit{A. Udomene}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 64, No. 3, 558--567 (2006; Zbl 1102.47056) Full Text: DOI OpenURL References: [1] Aksoy, A.G.; Khamsi, M.A., Nonstandard methods in fixed point theory, (1990), Springer New York · Zbl 0713.47050 [2] Bynum, W.L., Normal structure coefficients for Banach spaces, Pacific J. math., 86, 427-436, (2001) · Zbl 0442.46018 [3] Chidume, C.E.; Jinlu Liu; Udomene, A., Convergence of paths and approximation of fixed points of asymptotically nonexpansive mappings, Proc. amer. math. soc., 113, 473-480, (2005) · Zbl 1073.47059 [4] Cioranescu, I., Geometry of Banach spaces, duality mappings and nonlinear problems, (1990), Kluwer Academic Publishers Amsterdam · Zbl 0712.47043 [5] Goebel, K.; Kirk, W.A., A fixed point theorem for asymptotically nonexpansive mappings, Proc. amer. math. soc., 35, 171-174, (1972) · Zbl 0256.47045 [6] Goebel, K.; Kirk, W.A., Topics of metric fixed point theory, (1990), Cambridge University Press Cambridge · Zbl 0708.47031 [7] Kim, T.H.; Xu, H.K., Remarks on asymptotically nonexpansive mappings, Nonlinear anal., 41, 405-415, (2000) · Zbl 0957.47037 [8] Lim, T.C.; Xu, H.K., Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear anal., 22, 1345-1355, (1994) · Zbl 0812.47058 [9] Moudafi, A., Viscosity approximation methods for fixed-point problems, J. math. anal. appl., 241, 46-55, (2000) · Zbl 0957.47039 [10] Xu, H.K., Iterative algorithms for nonlinear operators, J. London math. soc., 66, 240-256, (2002) · Zbl 1013.47032 [11] Xu, H.K., Viscosity approximation methods for nonexpansive mappings, J. math. anal. appl., 298, 279-291, (2004) · Zbl 1061.47060 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.