zbMATH — the first resource for mathematics

A new class of bivariate copulas. (English) Zbl 1102.62054
Summary: We study a wide class of bivariate copulas depending on two univariate functions which generalizes many known families of copulas. We measure the dependence of any copula of this class in different ways, exhibit several properties concerning symmetry, dependence concepts, and concordance ordering, and provide several examples.

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62H20 Measures of association (correlation, canonical correlation, etc.)
Full Text: DOI
[1] Amblard, C.; Girard, S., Une famille semi-paramétrique de copules symétriques bivariées, C. R. acad. sci. Paris Série I, 333, 129-132, (2001) · Zbl 1012.60015
[2] Amblard, C.; Girard, S., Symmetry and dependence properties within a semiparametric family of bivariate copulas, J. nonparametr. statist., 14, 715-727, (2002) · Zbl 1019.62046
[3] Fisher, N.I., Copulas, (), 159-163
[4] Joe, H., Multivariate models and dependence concepts, (1997), Chapman & Hall New York · Zbl 0990.62517
[5] Lai, C.D.; Xie, M., A new family of positive quadrant dependent bivariate distributions, Statist. probab. lett., 46, 359-364, (2000) · Zbl 0943.62043
[6] Nelsen, R.B., An introduction to copulas, (1999), Springer New York · Zbl 0909.62052
[7] Nelsen, R.B.; Quesada Molina, J.J.; Rodrı́guez Lallena, J.A., Bivariate copulas with cubic sections, J. nonparametr. statist., 7, 205-220, (1997) · Zbl 0898.62074
[8] Quesada Molina, J.J.; Rodrı́guez Lallena, J.A., Bivariate copulas with quadratic sections, J. nonparametr. statist., 5, 323-337, (1995) · Zbl 0857.62060
[9] Rodrı́guez Lallena, J.A., 1996. Estudio de la compatibilidad y diseño de nuevas familias en la teorı́a de cópulas. Aplicaciones. Servicio de Publicaciones de la Universidad de Almerı́a, Spain.
[10] Sklar, A., Fonctions de répartition à n dimensions et leurs marges, Publ. inst. statist. Paris, 8, 229-231, (1959) · Zbl 0100.14202
[11] Stromberg, K.R., Introduction to classical real analysis, (1981), Wadsworth & Brooks/Cole Pacific Grove, CA · Zbl 0454.26001
[12] Úbeda Flores, M., 1998. Introducción a la teorı́a de cópulas. Aplicaciones. Trabajo de investigación de Tercer Ciclo, Universidad de Almerı́a, Spain.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.