Csiszár, Imre; Talata, Zsolt Consistent estimation of the basic neighborhood of Markov random fields. (English) Zbl 1102.62105 Ann. Stat. 34, No. 1, 123-145 (2006). Author’s abstract: For Markov random fields on \(Z^d\) with finite state space, the author addresses the statistical estimation of the basic neighborhood, the smallest region that determines the conditional distribution at a site on the condition that the values at all other sites are given. A modification of the Bayesian information criterion, replacing likelihood by pseudo-likelihood, is proved to provide strongly consistent estimation from observing a realization of the field on increasing finite regions: the estimated basic neighborhood equals the true one eventually almost surely, not assuming any prior bound on the size of the latter. Stationarity of the Markov field is not required, and phase transitions do not affect the results. Reviewer: Nikolai N. Leonenko (Cardiff) Cited in 18 Documents MSC: 62M40 Random fields; image analysis 62F12 Asymptotic properties of parametric estimators 60G60 Random fields 62F15 Bayesian inference 82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics Keywords:pseudo-likelihood; Gibbs measure; model selection; information criterion; typicality × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Akaike, H. (1972). Information theory and an extension of the maximum likelihood principle. In Proc. Second International Symposium on Information Theory . Supplement to Problems of Control and Information Theory (B. N. Petrov and F. Csáki, eds.) 267–281. Akadémiai Kiadó, Budapest. · Zbl 0283.62006 [2] Azencott, R. (1987). Image analysis and Markov fields. In Proc. First International Conference on Industrial and Applied Mathematics, Paris (J. McKenna and R. Temen, eds.) 53–61. SIAM, Philadelphia. [3] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). J. Roy. Statist. Soc. Ser. B 36 192–236. JSTOR: · Zbl 0327.60067 [4] Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician 24 179–195. [5] Bühlmann, P. and Wyner, A. J. (1999). Variable length Markov chains. Ann. Statist. 27 480–513. · Zbl 0983.62048 · doi:10.1214/aos/1018031204 [6] Comets, F. (1992). On consistency of a class of estimators for exponential families of Markov random fields on the lattice. Ann. Statist. 20 455–468. JSTOR: · Zbl 0787.62100 · doi:10.1214/aos/1176348532 [7] Csiszár, I. (2002). Large-scale typicality of Markov sample paths and consistency of MDL order estimators. IEEE Trans. Inform. Theory 48 1616–1628. · Zbl 1060.62092 · doi:10.1109/TIT.2002.1003842 [8] Csiszár, I. and Shields, P. C. (2000). The consistency of the BIC Markov order estimator. Ann. Statist. 28 1601–1619. · Zbl 1105.62311 · doi:10.1214/aos/1015957472 [9] Csiszár, I. and Talata, Zs. (2006). Context tree estimation for not necessarily finite memory processes, via BIC and MDL. IEEE Trans. Inform. Theory 52 1007–1016. · Zbl 1284.94027 · doi:10.1109/TIT.2005.864431 [10] Dobrushin, R. L. (1968). The description of a random field by means of conditional probabilities and conditions for its regularity. Theory Probab. Appl. 13 197–224. · Zbl 0184.40403 [11] Finesso, L. (1992). Estimation of the order of a finite Markov chain. In Recent Advances in Mathematical Theory of Systems, Control , Networks and Signal Processing 1 (H. Kimura and S. Kodama, eds.) 643–645. Mita, Tokyo. [12] Geman, S. and Graffigne, C. (1987). Markov random field image models and their applications to computer vision. In Proc. International Congress of Mathematicians 2 (A. M. Gleason, ed.) 1496–1517. Amer. Math. Soc., Providence, RI. · Zbl 0665.68067 [13] Georgii, H. O. (1988). Gibbs Measures and Phase Transitions. de Gruyter, Berlin. · Zbl 0657.60122 · doi:10.1515/9783110850147 [14] Gidas, B. (1988). Consistency of maximum likelihood and pseudolikelihood estimators for Gibbs distributions. In Stochastic Differential Systems, Stochastic Control Theory and Applications (W. Fleming and P.-L. Lions, eds.) 129–145. Springer, New York. · Zbl 0648.62099 [15] Gidas, B. (1993). Parameter estimation for Gibbs distributions from fully observed data. In Markov Random Fields: Theory and Application (R. Chellappa and A. Jain, eds.) 471–498. Academic Press, Boston. [16] Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an autoregression. J. Roy. Statist. Soc. Ser. B 41 190–195. JSTOR: · Zbl 0408.62076 [17] Haughton, D. (1988). On the choice of a model to fit data from an exponential family. Ann. Statist. 16 342–355. JSTOR: · Zbl 0657.62037 · doi:10.1214/aos/1176350709 [18] Ji, C. and Seymour, L. (1996). A consistent model selection procedure for Markov random fields based on penalized pseudolikelihood. Ann. Appl. Probab. 6 423–443. · Zbl 0856.62082 · doi:10.1214/aoap/1034968138 [19] Pickard, D. K. (1987). Inference for discrete Markov fields: The simplest non-trivial case. J. Amer. Statist. Assoc. 82 90–96. JSTOR: · Zbl 0621.62091 · doi:10.2307/2289128 [20] Rényi, A. (1970). Probability Theory. North-Holland, Amsterdam. · Zbl 0206.18002 [21] Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461–464. JSTOR: · Zbl 0379.62005 · doi:10.1214/aos/1176344136 [22] Weinberger, M. J., Rissanen, J. and Feder, M. (1995). A universal finite memory source. IEEE Trans. Inform. Theory 41 643–652. · Zbl 0820.94002 · doi:10.1109/18.382011 [23] Willems, F. M. J., Shtarkov, Y. M. and Tjalkens, T. J. (1993). The context-tree weighting method: Basic properties. Technical report, Dept. Electrical Engineering, Eindhoven Univ. · Zbl 0837.94011 [24] Willems, F. M. J., Shtarkov, Y. M. and Tjalkens, T. J. (2000). Context-tree maximizing. In Proc. 2000 Conf. Information Sciences and Systems TP6-7–TP6-12. Princeton, NJ. · Zbl 0837.94011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.