Jafari, Hossein; Daftardar-Gejji, Varsha Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. (English) Zbl 1102.65135 Appl. Math. Comput. 180, No. 2, 488-497 (2006). Summary: The Adomian decomposition method is used to obtain solutions of linear/nonlinear fractional diffusion and wave equations. Some illustrative examples are presented. Cited in 62 Documents MSC: 65R20 Numerical methods for integral equations 45K05 Integro-partial differential equations 26A33 Fractional derivatives and integrals Keywords:fractional partial differential equation; fractional diffusion equation; fractional wave equation; Adomian polynomials; caputo fractional derivative; numerical examples PDF BibTeX XML Cite \textit{H. Jafari} and \textit{V. Daftardar-Gejji}, Appl. Math. Comput. 180, No. 2, 488--497 (2006; Zbl 1102.65135) Full Text: DOI References: [1] Abboui, K.; Cherruault, Y., New ideas for proving convergence of decomposition methods, Comput. Appl. Math., 29, 7, 103-105 (1995) · Zbl 0832.47051 [2] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer · Zbl 0802.65122 [3] Babolian, E.; Biazar, J.; Vahidi, A. R., The decomposition method applied to systems of Fredholm integral equations of the second kind, Appl. Math. Comput., 148, 2, 443-452 (2004) · Zbl 1042.65104 [4] Biazar, J.; Babolian, E.; Islam, R., Solution of Volterra integral equations of the first kind by Adomian method, Appl. Math. Comput., 139, 249-258 (2003) · Zbl 1027.65180 [5] Biazar, J.; Babolian, E.; Islam, R., Solution of ordinary differential equations by Adomian decomposition method, Appl. Math. Comput., 147, 3, 713-719 (2004) · Zbl 1034.65053 [6] Biazar, J.; Islam, R., Solution of wave equation by Adomian decomposition method and the restrictions of the method, Appl. Math. Comput., 149, 3, 807-814 (2004) · Zbl 1038.65100 [7] Daftardar-Gejji, V.; Jafari, H., Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301, 2, 508-518 (2005) · Zbl 1061.34003 [8] Diethelm, K., An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. Anal., 5, 1-6 (1997) · Zbl 0890.65071 [9] El-Sayed, A. M.A., Fractional-order diffusion-wave equation, Int. J. Theor. Phys., 35, 2, 311-322 (1996) · Zbl 0846.35001 [10] Kaya, D.; El-Sayed, S. M., A numerical solution of the Klein-Gordon equation and convergence of the decomposition method, Appl. Math. Comput., 156, 2, 341-353 (2004) · Zbl 1084.65101 [11] Luchko, Yu.; Gorenflo, R., An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math Vietnamica, 24, 2, 207-233 (1999) · Zbl 0931.44003 [12] Mainardi, F., On the initial value problem for the fractional diffusion-wave equation, (Rionero, S.; Ruggeeri, T., Waves and Stability in Continuous Media (1994), World Scientific: World Scientific Singapore), 246-251 [13] Mainardi, F., Fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9, 23-28 (1996) · Zbl 0879.35036 [14] Moustafa, O. L., On the Cauchy problem for some fractional order partial differential equations, Chaos, Soltions Fractals, 18, 135-140 (2003) · Zbl 1059.35034 [15] Nigmatullin, R. R., The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Status Solidi B, 133, 425 (1986) [16] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010 [17] Samko, G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach Yverdon · Zbl 0818.26003 [18] Schneider, W. R.; Wyss, W., J. Math. Phys., 30, 1, 134-144 (1998) [19] Shawaghfeh, N. T., Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., 131, 517-529 (2002) · Zbl 1029.34003 [20] Wazwaz, A. M., A reliable technique for solving the wave equation in infinite one-dimensional medium, Appl. Math. Comput., 92, 1-7 (1998) · Zbl 0942.65107 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.