×

On the finitistic dimension conjecture. II: Related to finite global dimension. (English) Zbl 1103.18011

This is a continuation of the author’s earlier paper with a similar title [C. Xi, J. Pure Appl. Algebra 193, 287–305 (2004); erratum ibid. 202, 325–328 (2005; Zbl 1067.16016)]. The setup consists of an algebra monomorphism \(f : B \to A\) or a chain of such monomorphisms. In the case of a chain the author assumes that, at each step, the radical of the subalgebra is a (left) ideal of the ambient algebra, which is assumed to be of finite projective dimension as a module over the subalgebra. In the case \(A\) is of finite global dimension the author shows that the finitistic dimension of \(B\) is finite.
Another context considered by the author imposes an additional condition on the radical of \(B\) that its extension (as a right ideal) along \(f\) coincides with the radical of \(A\). In that case the finitistic dimension of \(B\) is finite, provided the global dimension of \(A\) is at most four. Another result of the author gives, under the same assumption on \(f\), the finiteness of the finitistic dimension of \(B\) provided the representation dimension of \(A\) is at most three.

MSC:

18G20 Homological dimension (category-theoretic aspects)
16E10 Homological dimension in associative algebras
16P10 Finite rings and finite-dimensional associative algebras
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)

Citations:

Zbl 1067.16016
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Auslander, M., Representation Dimension of Artin Algebras (1971), Queen Mary College Mathematics Notes: Queen Mary College Mathematics Notes Queen Mary College, London · Zbl 0331.16026
[2] Auslander, M.; Reiten, I., On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc., 52, 69-74 (1975) · Zbl 0337.16004
[3] Auslander, M.; Reiten, I.; Smalø, S. O., Representation Theory of Artin Algebras (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0834.16001
[4] Bass, H., Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc., 95, 466-488 (1960) · Zbl 0094.02201
[5] Coelho, F. U.; Platzeck, M. I., On the representation dimension of some classes of algebras, J. Algebra, 275, 2, 615-628 (2004) · Zbl 1065.16008
[6] Colby, R. R.; Fuller, K. R., A note on the Nakayama conjectures, Tsukuba J. Math., 14, 343-352 (1990) · Zbl 0741.16004
[7] Erdmann, K.; Holm, T.; Iyama, O.; Schröer, J., Radical embedding and representation dimension, Adv. Math., 185, 159-177 (2004) · Zbl 1062.16006
[8] Green, E. L.; Kirkman, E.; Kuzmanovich, J., Finitistic dimensions of finite-dimensional monomial algebras, J. Algebra, 136, 1, 37-50 (1991) · Zbl 0727.16003
[9] Green, E. L.; Zimmermann-Huisgen, B., Finitistic dimension of artin rings with vanishing radical cube, Math. Z., 206, 505-526 (1991) · Zbl 0707.16002
[10] Hilton, P. J.; Stammbach, U., A Course in Homological Algebra (1997), Springer: Springer New York · Zbl 0863.18001
[11] K. Igusa, G. Todorov, On the finitistic global dimension conjecture for artin algebras, preprint, 2002, pp. 1-4.; K. Igusa, G. Todorov, On the finitistic global dimension conjecture for artin algebras, preprint, 2002, pp. 1-4.
[12] Igusa, K.; Zacharia, D., Syzygy pairs in a monomial algebra, Proc. Amer. Math. Soc., 108, 601-604 (1990) · Zbl 0688.16032
[13] Iyama, O., Finiteness of representation dimension, Proc. Amer. Math. Soc., 131, 4, 1011-1014 (2003) · Zbl 1018.16010
[14] Y.M. Liu, C.C. Xi, Constructions of stable equivalences of Morita type for finite dimensional algebras I, Trans. Amer. Math. Soc., to appear. Preprint is available at http://math.bnu.edu.cn/\( \sim \); Y.M. Liu, C.C. Xi, Constructions of stable equivalences of Morita type for finite dimensional algebras I, Trans. Amer. Math. Soc., to appear. Preprint is available at http://math.bnu.edu.cn/\( \sim \) · Zbl 1106.16012
[15] Nakayama, T., On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg, 22, 300-307 (1958) · Zbl 0082.03004
[16] Wang, Y., A note on the finitistic dimension conjecture, Comm. Algebra, 22, 7, 2525-2528 (1994) · Zbl 0804.16006
[17] Wiedemann, A., Integral versions of Nakayama and finitistic dimension conjectures, J. Algebra, 170, 2, 388-399 (1994) · Zbl 0813.16010
[18] Xi, C. C., On the representation dimension of finite dimensional algebras, J. Algebra, 226, 332-346 (2000) · Zbl 0960.16016
[19] C.C. Xi, On the finitistic dimension conjecture I: related to representation-finite algebras, J. Pure Appl. Algebra 193 (2004) 287-305. Erratum to “On the finitistic dimension conjecture I: related to representation-finite algebras. J. Pure Appl. Algebra 193 (2004) 287-305”. Preprint is available at http://math.bnu.edu.cn/\( \sim \); C.C. Xi, On the finitistic dimension conjecture I: related to representation-finite algebras, J. Pure Appl. Algebra 193 (2004) 287-305. Erratum to “On the finitistic dimension conjecture I: related to representation-finite algebras. J. Pure Appl. Algebra 193 (2004) 287-305”. Preprint is available at http://math.bnu.edu.cn/\( \sim \) · Zbl 1067.16016
[20] Xi, C. C., Characteristic tilting modules and Ringel duals, Sci. China A, 43, 11, 1121-1130 (2000) · Zbl 1026.16003
[21] Xi, C. C., Representation dimension and quasi-hereditary algebras, Adv. Math., 168, 193-212 (2002) · Zbl 1050.16004
[22] Yamagata, K., Frobenius algebras, (Handbook of Algebra, vol. 1 (1996)), 841-887 · Zbl 0879.16008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.