Liebeck, Martin W.; Martin, Benjamin M. S.; Shalev, Aner On conjugacy classes of maximal subgroups of finite simple groups, and a related zeta function. (English) Zbl 1103.20010 Duke Math. J. 128, No. 3, 541-557 (2005). Authors’ summary: We prove that the number of conjugacy classes of maximal subgroups of bounded order in a finite group of Lie type of bounded rank is bounded. For exceptional groups this solves a long-standing open problem. The proof uses, among other tools, some methods from geometric invariant theory. Using this result, we provide a sharp bound for the total number of conjugacy classes of maximal subgroups of Lie-type groups of fixed rank, drawing conclusions regarding the behaviour of the corresponding “zeta function” \(\zeta_G(s)=\sum_{M\max G}|G:M|^{-s}\), which appears in many probabilistic applications. More specifically, we are able to show that for simple groups \(G\) and for any fixed real number \(s>1\), \(\zeta_G(s)\to 0\) as \(|G|\to\infty\). This confirms a conjecture made by M. W. Liebeck and A. Shalev [in Ann. Math. (2) 144, No. 1, 77-125 (1996; Zbl 0865.20020), p. 84]. We also apply these results to prove the conjecture made by M. W. Liebeck and A. Shalev [in J. Comb. Theory, Ser. A 75, No. 2, 341-352 (1996; Zbl 0866.20003), Conjecture 1, p. 343], that the symmetric group \(S_n\) has \(n^{o(1)}\) conjugacy classes of primitive maximal subgroups. Reviewer: Victor Mazurov (Novosibirsk) Cited in 24 Documents MSC: 20D06 Simple groups: alternating groups and groups of Lie type 20E28 Maximal subgroups 11M41 Other Dirichlet series and zeta functions 20E45 Conjugacy classes for groups 20B35 Subgroups of symmetric groups Keywords:numbers of conjugacy classes; maximal subgroups of bounded order; finite groups of Lie type; exceptional groups; zeta functions; finite simple groups; symmetric groups Citations:Zbl 0865.20020; Zbl 0866.20003 × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] M. Aschbacher, On the maximal subgroups of the finite classical groups , Invent. Math. 76 (1984), 469–514. · Zbl 0537.20023 · doi:10.1007/BF01388470 [2] M. Aschbacher and L. Scott, Maximal subgroups of finite groups , J. Algebra 92 (1985), 44–80. · Zbl 0549.20011 · doi:10.1016/0021-8693(85)90145-0 [3] L. Babai, The probability of generating the symmetric group , J. Combin. Theory Ser. A 52 (1989), 148–153. · Zbl 0685.60012 · doi:10.1016/0097-3165(89)90068-X [4] A. Borel and J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs , Invent. Math. 12 (1971), 95–104. · Zbl 0238.20055 · doi:10.1007/BF01404653 [5] R. W. Carter, Simple Groups of Lie Type , Pure and Appl. Math. 28 , Wiley, New York, 1972. · Zbl 0248.20015 [6] ——–, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters , Pure and Appl. Math., Wiley-Interscience, New York, 1985. · Zbl 0567.20023 [7] A. M. Cohen, M. W. Liebeck, J. Saxl, and G. M. Seitz, The local maximal subgroups of exceptional groups of Lie type, finite and algebraic , Proc. London Math. Soc. (3) 64 (1992), 21–48. · Zbl 0706.20037 · doi:10.1112/plms/s3-64.1.21 [8] J. D. Dixon, The probability of generating the symmetric group , Math. Z. 110 (1969), 199–205. · Zbl 0176.29901 · doi:10.1007/BF01110210 [9] R. L. Griess and A. J. E. Ryba, Finite simple groups which projectively embed in an exceptional Lie group are classified! Bull. Amer. Math. Soc. (N.S.) 36 (1999), 75–93. · Zbl 0916.22008 · doi:10.1090/S0273-0979-99-00771-5 [10] R. M. Guralnick, W. M. Kantor, and J. Saxl, The probability of generating a classical group , Comm. Alg. 22 (1994), 1395–1402. · Zbl 0820.20022 · doi:10.1080/00927879408824912 [11] R. M. Guralnick, M. W. Liebeck, J. Saxl, and A. Shalev, Random generation of finite simple groups , J. Algebra 219 (1999), 345–355. · Zbl 0948.20052 · doi:10.1006/jabr.1999.7869 [12] W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group , Geom. Dedicata 36 (1990), 67–87. · Zbl 0718.20011 · doi:10.1007/BF00181465 [13] G. R. Kempf, Instability in invariant theory , Ann. of Math. (2) 108 (1978), 299–316. JSTOR: · Zbl 0406.14031 · doi:10.2307/1971168 [14] P. B. Kleidman, The maximal subgroups of the finite \(8\)-dimensional orthogonal groups \(P\Omega^+_8(q)\) and of their automorphism groups , J. Algebra 110 (1987), 173–242. · Zbl 0623.20031 · doi:10.1016/0021-8693(87)90042-1 [15] –. –. –. –., The maximal subgroups of the Chevalley groups \(G_2(q)\) with \(q\) odd, of the Ree groups \(^2\!G_2(q)\), and their automorphism groups , J. Algebra 117 (1988), 30–71. · Zbl 0651.20020 · doi:10.1016/0021-8693(88)90239-6 [16] P. B. Kleidman and M. W. Liebeck, The Subgroup Structure of the Finite Classical Groups , London Math. Soc. Lecture Note Ser. 129 , Cambridge Univ. Press, Cambridge, 1990. · Zbl 0697.20004 [17] M. J. Larsen, Lifting homomorphisms from characteristic \(p\) to characteristic \(0\) , Appendix A of R. L. Griess Jr. and A. J. E. Ryba, Embeddings of \(¶GL_2(31)\) and \(\SL_2(32)\) in \(E_8(\mathbb{C})\) , Duke Math. J. 94 (1998), 181–211. · Zbl 0980.20035 · doi:10.1215/S0012-7094-98-09409-1 [18] M. J. Larsen and R. Pink, Finite subgroups of algebraic groups , preprint, 1998, to appear in J. Amer. Math. Soc., http://www.math.uni-mannheim.de/\(\sim\)fga/presort14.htm M. W. Liebeck, C. E. Praeger, and J. Saxl, On the O’Nan-Scott theorem for primitive permutation groups , J. Austral. Math. Soc. Ser. A 44 (1988), 389–396. · doi:10.1017/S144678870003216X [19] M. W. Liebeck and J. Saxl, Minimal degrees of primitive permutation groups, with an application to monodromy groups of Riemann surfaces , Proc. London Math. Soc. (3) 63 (1991), 266–314. · Zbl 0696.20004 · doi:10.1112/plms/s3-63.2.266 [20] M. W. Liebeck and G. M. Seitz, Maximal subgroups of exceptional groups of Lie type, finite and algebraic , Geom. Dedicata 35 (1990), 353–387. · Zbl 0721.20030 · doi:10.1007/BF00147353 [21] ——–, Reductive subgroups of exceptional algebraic groups , Mem. Amer. Math. Soc. 121 (1996), no. 580. · Zbl 0851.20045 [22] –. –. –. –., On the subgroup structure of classical groups , Invent. Math. 134 (1998), 427–453. · Zbl 0920.20039 · doi:10.1007/s002220050270 [23] –. –. –. –., On finite subgroups of exceptional algebraic groups , J. Reine Angew. Math. 515 (1999), 25–72. · Zbl 0980.20034 · doi:10.1515/crll.1999.078 [24] ——–, The maximal subgroups of positive dimension in exceptional algebraic groups , Mem. Amer. Math. Soc. 169 (2004), no. 802. · Zbl 1058.20040 [25] M. W. Liebeck and A. Shalev, The probability of generating a finite simple group , Geom. Dedicata 56 (1995), 103–113. · Zbl 0836.20068 · doi:10.1007/BF01263616 [26] –. –. –. –., Classical groups, probabilistic methods, and the \((2,3)\)-generation problem , Ann. of Math. 144 (1996), 77–125. JSTOR: · Zbl 0865.20020 · doi:10.2307/2118584 [27] –. –. –. –., Maximal subgroups of symmetric groups , J. Combin. Theory Ser. A 75 (1996), 341–352. · Zbl 0866.20003 · doi:10.1006/jcta.1996.0082 [28] –. –. –. –., Simple groups, probabilistic methods, and a conjecture of Kantor and Lubotzky , J. Algebra 184 (1996), 31–57. · Zbl 0870.20014 · doi:10.1006/jabr.1996.0248 [29] G. Lusztig, Homomorphisms of the alternating group \(A_5\) into reductive groups , J. Algebra 260 (2003), 298–322. · Zbl 1074.20030 · doi:10.1016/S0021-8693(02)00660-9 [30] G. Malle, The maximal subgroups of \(^2\!F_4(q^2)\) , J. Algebra 139 (1991), 52–69. · Zbl 0725.20014 · doi:10.1016/0021-8693(91)90283-E [31] A. Mann and A. Shalev, Simple groups, maximal subgroups, and probabilistic aspects of profinite groups , Israel J. Math. 96 , part B (1996), 449–468. · Zbl 0877.20017 · doi:10.1007/BF02937317 [32] B. M. S. Martin, A normal subgroup of a strongly reductive subgroup is strongly reductive , J. Algebra 265 (2003), 669–674. · Zbl 1032.20030 · doi:10.1016/S0021-8693(03)00293-X [33] –. –. –. –., Reductive subgroups of reductive groups in nonzero characteristic , J. Algebra 262 (2003), 265–286. · Zbl 1103.20045 · doi:10.1016/S0021-8693(03)00189-3 [34] R. W. Richardson, Conjugacy classes of \(n\)-tuples in Lie algebras and algebraic groups , Duke Math. J. 57 (1988), 1–35. · Zbl 0685.20035 · doi:10.1215/S0012-7094-88-05701-8 [35] M. Schaffer, Twisted tensor product subgroups of finite classical groups , Comm. Algebra 27 (1999), 5097–5166. · Zbl 0938.20038 · doi:10.1080/00927879908826749 [36] G. M. Seitz, Representations and maximal subgroups of finite groups of Lie type , Geom. Dedicata 25 (1988), 391–406. · Zbl 0716.20009 · doi:10.1007/BF00191934 [37] P. Slodowy, “Two notes on a finiteness problem in the representation theory of finite groups” in Algebraic Groups and Lie Groups: A Volume of Papers in Honor of the Late R. W. Richardson , Austral. Math. Soc. Lect. Ser. 9 , Cambridge Univ. Press, Cambridge, 1997, 331–348. · Zbl 0874.22011 [38] T. A. Springer, Linear Algebraic Groups , 2nd ed., Birkhäuser, Boston, 1998. · Zbl 0927.20024 [39] T. A. Springer and R. Steinberg, “Conjugacy classes” in Seminar on Algebraic Groups and Related Finite Groups (Princeton, 1968/69) , Lecture Notes in Math. 131 , Springer, Berlin, 1970, 168–266. [40] R. Steinberg, Lectures on Chevalley Groups , Yale University, New Haven, 1968. · Zbl 1196.22001 [41] M. Suzuki, On a class of doubly transitive groups , Ann. of Math. (2) 75 (1962), 105–145. JSTOR: · Zbl 0106.24702 · doi:10.2307/1970423 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.