×

Limit groups as limits of free groups. (English) Zbl 1103.20026

By the authors’ definition a marked group \((G,S)\) consists of a group \(G\) with a prescribed tuple \(S=\{s_1,\dots,s_n\}\) of generators. Two marked groups \((G_1,S_1)\), \((G_2,S_2)\) are isomorphic as marked groups if and only if the natural bijection of \(S_1\) onto \(S_2\) extends to an isomorphism of \(G_1\) onto \(G_2\). The set \({\mathcal G }_n\) of all marked groups with \(n\) generators is considered as a compact topological space.
It appears that the limits of free groups in \({\mathcal G}_n\) are Remeslennikov’s finitely generated fully residually free groups, or Sela’s limit groups. The authors’ topological approach to these groups gives some new insight in the relations between fully residually free groups, the universal theory of free groups, ultraproducts and non-standard free groups.

MSC:

20F05 Generators, relations, and presentations of groups
20E05 Free nonabelian groups
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
20E26 Residual properties and generalizations; residually finite groups
03C60 Model-theoretic algebra
57M07 Topological methods in group theory
22A05 Structure of general topological groups
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] [Bas91] H. Bass,Group actions on non-Archimedean trees, inArboreal Group Theory (Berkeley, CA, 1988), Springer, New York, 1991, pp. 69–131.
[2] [Bau62] G. Baumslag,On generalised free products, Mathematische Zeitschrift78 (1962), 423–438. · Zbl 0104.24402
[3] [Bau67] B. Baumslag,Residually free groups, Proceedings of the London Mathematical Society (3)17 (1967), 402–418. · Zbl 0166.01502
[4] [BH99] M. R. Bridson and A. Haefliger,Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften319, Springer-Verlag, Berlin, 1999. · Zbl 0988.53001
[5] [BMR77] R. Botto Mura and A. Rhemtulla,Orderable Groups, Lecture Notes in Pure and Applied Mathematics, Vol. 27, Marcel Dekker, New York, 1977.
[6] [BMR99] G. Baumslag, A. Myasnikov and V. Remeslennikov,Algebraic geometry over groups. I. Algebraic sets and ideal theory, Journal of Algebra219 (1999), 16–79. · Zbl 0938.20020
[7] [BMR00] G. Baumslag, A. Myasnikov and V. Remeslennikov,Algebraic geometry over groups, inAlgorithmic Problems in Groups and Semigroups (Lincoln, NE, 1998), Trends in Mathematics, Birkhäuser Boston, Boston, MA, 2000, pp. 35–50.
[8] [BMR02] G. Baumslag, A. Myasnikov and V. Remeslennikov,Discriminating completions of hyperbolic groups, Geometriae Dedicate92 (2002), 115–143. · Zbl 1011.20041
[9] [Bou71] N. Bourbaki,Éléments de mathématique. Topologie générale, Chapitres 1 à 4, Hermann, Paris, 1971.
[10] [BS69] J. L. Bell and A. B. Slomson,Models and Ultraproducts: An Introduction, North-Holland, Amsterdam, 1969. · Zbl 0179.31402
[11] [CE89] L. P. Comerford, Jr. and C. C. Edmunds,Solutions of equations in free groups, inGroup Theory (Singapore, 1987), de Gruyter, Berlin, 1989, pp. 347–356.
[12] [Cha] Z. Chatzidakis,Limit groups, viewed by a logician, notes accessible athttp://www.logique.jussieu.fr/www.zoe/papiers/limit.dvi.
[13] [Cha00] C. Champetier,L’espace des groupes de type fini, Topology39 (2000), 657–680. · Zbl 0959.20041
[14] [Chi95] I. M. Chiswell,Introduction to {\(\Lambda\)}-trees, inSemigroups, Formal Languages and Groups (York, 1993), Volume 466 of NATO Advanced Science Institution Series C: Mathematical and Physical Sciences, Kluwer, Dordrecht, 1995, pp. 255–293.
[15] [Chi01] I. Chiswell,Introduction to {\(\Lambda\)}-Trees, World Scientific, River Edge, NJ, 2001.
[16] [CK90] C. C. Chang and H. J. Keisler,Model Theory, Volume 73 of Studies in Logic and the Foundations of Mathematics, third edition, North-Holland, Amsterdam, 1990.
[17] [FGM+98] B. Fine, A. M. Gaglione, A. Myasnikov, G. Rosenberger and D. Spellman,A classification of fully residually free groups of rank three or less, Journal of Algebra200 (1998), 571–605. · Zbl 0899.20009
[18] [FGRS95] B. Fine, A. M. Gaglione, G. Rosenberger and D. Spellman,n-Free groups and questions about universally free groups, inGroups ’93 Galway/St. Andrews, Vol. 1 (Galway, 1993), London Mathematical Society Lecture Note Series211, Cambridge University Press, Cambridge, 1995, pp. 191–204. · Zbl 0846.20025
[19] [GK90] R. I. Grigorchuk and P. F. Kurchanov,Classification of epimorphisms from fundamental groups of surfaces to free groups, Matematicheskie Zametki48 (1990), 26–35, 158. · Zbl 0810.20032
[20] [GKM95] D. Gildenhuys, O. Kharlampovich and A. Myasnikov,CSA-groups and separated free constructions, Bulletin of the Australian Mathematical Society52 (1995), 63–84. · Zbl 0838.20025
[21] [GL] V. Guirardel and G. Levitt, In preparation.
[22] [Gri84] R. I. Grigorchuk,Degrees of growth of finitely generated groups and the theory of invariant means, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya48 (5) (1984), 939–985.
[23] [Gro81] M. Gromov,Groups of polynomial growth and expanding maps, Institut des Hautes Études Scientifiques. Publications Mathématiques53 (1981), 53–73. · Zbl 0474.20018
[24] [GS93] A. M. Gaglione and D. Spellman,Even more model theory of free groups, inInfinite Groups and Group Rings (Tuscaloosa, AL, 1992), Volume 1 of Series in Algebra, World Scientific Publishing, River Edge, NJ, 1993, pp. 37–40.
[25] [Gui03] V. Guirardel,Limit groups and groups acting on \(\mathbb{R}\) n , Geometry and Topology, to appear.
[26] [Hod97] W. Hodges,A Shorter Model Theory, Cambridge University Press, Cambridge, 1997. · Zbl 0873.03036
[27] [KM98a] O. Kharlampovich and A. Myasnikov,Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, Journal of Algebra200 (1998), 472–516. · Zbl 0904.20016
[28] [KM98b] O. Kharlampovich and A. Myasnikov,Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups, Journal of Algebra200 (1998), 517–570. · Zbl 0904.20017
[29] [KM98c] O. Kharlampovich, A. Myasnikov,Tarski’s problem about the elementary theory of free groups has a positive solution, Electronic Research Announcements of the American Mathematical Society4 (1998), 101–108, (electronic). · Zbl 0923.20016
[30] [KM99] O. Kharlampovich and A. Myasnikov,Description of fully residually free groups and irreducible affine varieties over a free group, inSummer School in Group Theory in Banff, 1996, Volume 17 of CRM Proceedings and Lecture Notes, American Mathematical Society, Providence, RI, 1999, pp. 71–80.
[31] [Lev] G. Levitt,Automorphisms of hyperbolic groups and graph of groups, Geometriae Dedicata, to appear.
[32] [Lyn59] R. C. Lyndon,The equation a 2 b 2 >=c 2 in free groups, Michigan Mathematical Journal6 (1959), 89–95. · Zbl 0084.02803
[33] [Mag35] W. Magnus,Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Mathematische Annalen111 (1935), 259–280. · Zbl 0011.15201
[34] [MR96] A. G. Myasnikov and V. N. Remeslennikov,Exponential groups. II. Extensions of centralizers and tensor completion of CSA-groups, International Journal of Algebra and Computation6 (1996), 687–711. · Zbl 0866.20014
[35] [Osi02] D. V. Osin,Kazhdan constants of hyperbolic groups, Funktsionalaya Analiza i ego Prilozheniya36 (2002), 46–54.
[36] [Pio86] D. Piollet,Solutions d’une équation quadratique dans le groupe libre, Discrete Mathematics59 (1986), 115–123. · Zbl 0599.20035
[37] [Raz84] A. A. Razborov,Systems of equations in a free group, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya48 (1984), 779–832.
[38] [Rem89] V. N. Remeslennikov,free groups, Siberian Mathematical Journal30 (1989), 998–1001. · Zbl 0724.20025
[39] [RW01] D. Rolfsen and B. Wiest,Free group automorphisms, invariant orderings and topological applications, Algebraic Geometric Topology1 (2001), 311–320 (electronic). · Zbl 0985.57006
[40] [Sel01a] Z. Sela,Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publications Mathématiques. Institut de Hautes Études Scientifiques93 (2001), 31–105. · Zbl 1018.20034
[41] [Sel01b] Z. Sela,Diophantine geometry over groups VI: The elementary theory of a free group http://www.ma.huji.ac.il/zlil, 2001.
[42] [Sha00] Y. Shalom,Rigidity of commensurators and irreducible lattices, Inventiones Mathematicae141 (2000), 1–54. · Zbl 0978.22010
[43] [Sta95] J. R. Stallings,Problems about free quotients of groups, inGeometric Group Theory (Columbus, OH, 1992), Volume 3 of Ohio State University Mathematical Research Institute Publications, de Gruyter, Berlin, 1995, pp. 165–182.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.