He, Zhimin; Jiang, Xiaoming Triple positive solutions of boundary value problems for \(p\)-Laplacian dynamic equations on time scales. (English) Zbl 1103.34012 J. Math. Anal. Appl. 321, No. 2, 911-920 (2006). By using a triple fixed-point theorem, the authors prove the existence of at least three positive solutions of the \(p\)-Laplacian dynamic equation on a time scale \[ [\phi_{p}(u^{\Delta}(t))]^{\nabla}+g(t)f(u(t))=0,\quad t\in [0,T]_{\mathcal T}, \] satisfying the boundary conditions \[ u(0)-B_0(u^{\Delta}(0))=0, \quad u^{\Delta}(T)=0\quad {\text or} \quad u^{\Delta}(0)=0, \quad u(T)+B_1(u^{\Delta}(T))=0. \] Reviewer: Sotiris K. Ntouyas (Ioannina) Cited in 30 Documents MSC: 34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations 39A12 Discrete version of topics in analysis Keywords:time scale; \(p\)-Laplacian; boundary value problem; positive solution; fixed-point theorem PDF BibTeX XML Cite \textit{Z. He} and \textit{X. Jiang}, J. Math. Anal. Appl. 321, No. 2, 911--920 (2006; Zbl 1103.34012) Full Text: DOI References: [1] Agarwal, R. P.; Bohner, M., Basic calculus on time scales and some of its applications, Results Math., 35, 3-22 (1999) · Zbl 0927.39003 [2] Agarwal, R. P.; Lü, H.; O’Regan, D., Eigenvalues and the one-dimensional \(p\)-Laplacian, J. Math. Anal. Appl., 266, 383-400 (2002) · Zbl 1002.34019 [3] Anderson, D.; Avery, R. I.; Henderson, J., Existence of solutions for a one dimensional \(p\)-Laplacian on time-scales, J. Differential Equations Appl., 10, 889-896 (2004) · Zbl 1058.39010 [4] Atici, F. M.; Guseinov, G. Sh., On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Anal. Math., 141, 75-99 (2002) · Zbl 1007.34025 [5] Avery, R. I.; Chyan, C. J.; Henderson, J., Twin solutions of a boundary value problems for ordinary differential equations and finite difference equations, Comput. Math. Appl., 42, 695-704 (2001) · Zbl 1006.34022 [6] Avery, R. I.; Henderson, J., Existence of three positive pseudo-symmetric solutions for a one-dimensional \(p\)-Laplacian, J. Math. Anal. Appl., 277, 395-404 (2003) · Zbl 1028.34022 [7] Avery, R. I.; Henderson, J., Existence of three positive pseudo-symmetric solutions for a one dimensional discrete \(p\)-Laplacian, J. Differential Equations Appl., 10, 529-539 (2004) · Zbl 1053.39003 [8] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales, An Introduction with Applications (2001), Birkhäuser Boston: Birkhäuser Boston Boston · Zbl 0978.39001 [9] Bohner, M.; Peterson, A., Advances in Dynamic Equations on Time Scales (2002), Birkhäuser Boston: Birkhäuser Boston Boston [10] Cabada, A., Extremal solutions for the difference \(φ\)-Laplacian problem with nonlinear functional boundary conditions, Comput. Math. Appl., 42, 593-601 (2001) · Zbl 1001.39006 [11] Deimling, K., Nonlinear Functional Analysis (1985), Springer-Verlag: Springer-Verlag New York · Zbl 0559.47040 [12] Guo, D.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones (1988), Academic Press: Academic Press New York · Zbl 0661.47045 [13] Guo, Y. P.; Ge, W. G., Three positive solutions for the one-dimensional \(p\)-Laplacian, J. Math. Anal. Appl., 286, 491-508 (2003) · Zbl 1045.34005 [14] He, Z. M., Double positive solutions of boundary value problems for \(p\)-Laplacian dynamic equations on time scales, Appl. Anal., 84, 377-390 (2005) · Zbl 1082.39002 [15] Hilger, S., Analysis on measure chains—A unified approach to continuous and discrete calculus, Results Math., 18, 18-56 (1990) · Zbl 0722.39001 [16] Lakshmikantham, V.; Sivasundaram, S.; Kaymakcalan, B., Dynamical Systems on Measure Chains (1996), Kluwer Academic: Kluwer Academic Boston · Zbl 0869.34039 [17] Li, Z. Y.; Li, C. Z., Existence of triple positive solutions of a kind \(p\)-Laplacian boundary value problems, Math. Appl. (supp.), 17, 101-105 (2004), (in Chinese) [18] Liu, Y.; Ge, W., Multiple positive solutions to three-point boundary value problem with \(p\)-Laplacian operator, J. Math. Anal. Appl., 277, 293-302 (2003) · Zbl 1026.34028 [19] Liu, Y.; Ge, W., Twin positive solutions of boundary value problems for finite difference equations with \(p\)-Laplacian operator, J. Math. Anal. Appl., 278, 551-561 (2003) · Zbl 1019.39002 [20] Ren, J. L.; Ge, W. G.; Ren, B. X., Existence of three positive solutions for quasi-linear boundary value problems, Acta Math. Appl. Sinica (English Ser.), 21, 353-358 (2005) · Zbl 1113.34016 [21] Wang, J. Y., The existence of positive solutions for the one-dimensional \(p\)-Laplacian, Proc. Amer. Math. Soc., 125, 2275-2283 (1997) · Zbl 0884.34032 [22] Wang, H. Y., On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl., 281, 287-306 (2003) · Zbl 1036.34032 [23] Wang, J. Y.; Zheng, D. W., On the existence of positive solutions to a three-point boundary value problem for the one-dimensional \(p\)-Laplacian, Z. Angew. Math. Mech., 77, 477-479 (1997) · Zbl 0879.34032 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.